This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267788 #4 Jan 20 2016 12:31:18 %S A267788 2,4,4,8,16,6,15,64,36,9,28,225,216,81,12,51,784,1056,729,144,16,92, %T A267788 2601,5004,5081,1728,256,20,164,8464,22110,34173,14956,4096,400,25, %U A267788 290,26896,94554,211555,122770,44742,8000,625,30,509,84100,391314,1262760,912667 %N A267788 T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row greater than or equal to, and in every column greater than, the previous repeated value. %C A267788 Table starts %C A267788 ..2....4.....8.....15.......28........51.........92.........164..........290 %C A267788 ..4...16....64....225......784......2601.......8464.......26896........84100 %C A267788 ..6...36...216...1056.....5004.....22110......94554......391314......1582824 %C A267788 ..9...81...729...5081....34173....211555....1262760.....7263481.....40755550 %C A267788 .12..144..1728..14956...122770....912667....6484282....44116906....291598056 %C A267788 .16..256..4096..44742...460598...4245574...37282358...312449872...2540944329 %C A267788 .20..400..8000.102954..1234716..13126812..132388406..1271314080..11831791048 %C A267788 .25..625.15625.238813..3380133..42012357..494152778..5520112546..59723941668 %C A267788 .30..900.27000.472174..7591852.106570618.1413416776.17806098826.217360101006 %C A267788 .36.1296.46656.935890.17155354.272337497.4075463059.57801662876.793861159136 %H A267788 R. H. Hardin, <a href="/A267788/b267788.txt">Table of n, a(n) for n = 1..200</a> %F A267788 Empirical for column k: %F A267788 k=1: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) %F A267788 k=2: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8) %F A267788 k=3: [order 12] %F A267788 k=4: [order 16] for n>18 %F A267788 k=5: [order 20] for n>22 %F A267788 k=6: [order 24] for n>27 %F A267788 Empirical for row n: %F A267788 n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) %F A267788 n=2: [order 9] %F A267788 n=3: [order 12] %F A267788 n=4: [order 93] %e A267788 Some solutions for n=4 k=4 %e A267788 ..1..0..1..0....1..0..0..0....0..1..0..0....1..1..1..0....1..1..0..1 %e A267788 ..0..1..0..1....1..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0 %e A267788 ..0..0..1..0....0..0..1..1....1..1..1..1....0..1..0..1....1..1..1..1 %e A267788 ..1..1..1..1....1..0..0..0....1..0..1..0....1..1..1..1....1..0..0..0 %Y A267788 Column 1 is A002620(n+2). %Y A267788 Column 2 is A030179(n+2). %Y A267788 Row 1 is A029907(n+1). %Y A267788 Row 2 is A267729. %K A267788 nonn,tabl %O A267788 1,1 %A A267788 _R. H. Hardin_, Jan 20 2016