This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267797 #41 Jul 23 2024 12:38:17 %S A267797 76,1364,24476,439204,7881196,141422324,2537720636,45537549124, %T A267797 817138163596,14662949395604,263115950957276,4721424167835364, %U A267797 84722519070079276,1520283919093591604,27280388024614569596,489526700523968661124,8784200221406821330636 %N A267797 Lucas numbers of the form (x^3 + y^3) / 2 where x and y are distinct positive integers. %C A267797 Lucas numbers that are the averages of 2 distinct positive cubes. %C A267797 Inspired by relation between sequence A024851 and A188378. %C A267797 Corresponding indices are 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, ... %C A267797 6*n + 3 is the corresponding form of indices. %C A267797 Corresponding y values are listed by A188378, for n > 0. Note that corresponding x values are A188378(n) - 2, for n > 0. %H A267797 Colin Barker, <a href="/A267797/b267797.txt">Table of n, a(n) for n = 1..750</a> %H A267797 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-1). %F A267797 a(n) = A000032(A016945(n)), for n > 0. %F A267797 a(n) = A188378(n)^3 - 3*A188378(n)^2 + 6*A188378(n) - 4, for n > 0. %F A267797 From _Colin Barker_, Jan 24 2016: (Start) %F A267797 a(n) = (9+4*sqrt(5))^(-n)*(2-sqrt(5)+(2+sqrt(5))*(9+4*sqrt(5))^(2*n)). %F A267797 a(n) = 18*a(n-1)-a(n-2) for n>2. %F A267797 G.f.: 4*x*(19-x) / (1-18*x+x^2). %F A267797 (End) %e A267797 Lucas number 76 is a term because 76 = (3^3 + 5^3) / 2. %e A267797 Lucas number 1364 is a term because 1364 = (10^3 + 12^3) / 2. %e A267797 Lucas number 24476 is a term because 24476 = (28^3 + 30^3) / 2. %e A267797 Lucas number 439204 is a term because 439204 = (75^3 + 77^3) / 2. %e A267797 Lucas number 7881196 is a term because 7881196 = (198^3 + 200^3) / 2. %e A267797 Lucas number 141422324 is a term because 141422324 = (520^3 + 522^3) / 2. %t A267797 Table[Fibonacci[6 n + 4] + Fibonacci[6 n + 2], {n, 1, 20}] (* _Vincenzo Librandi_, Jan 24 2016 *) %t A267797 LinearRecurrence[{18,-1},{76,1364},20] (* _Harvey P. Dale_, Jul 23 2024 *) %o A267797 (PARI) l(n) = fibonacci(n+1) + fibonacci(n-1); %o A267797 is(n) = for(i=ceil(sqrtn(n\2+1, 3)), sqrtn(n-.5, 3), ispower(n-i^3, 3) && return(1)); %o A267797 for(n=1, 120, if(is(2*l(n)), print1(l(n), ", "))); %o A267797 (PARI) a(n) = ((5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n)^3 + (5*fibonacci(n)*fibonacci(n+1) - 1 + (-1)^n)^3) / 2; %o A267797 (PARI) a(n) = (fibonacci(6*n+4) + fibonacci(6*n+2)); %o A267797 (PARI) Vec(4*x*(19-x)/(1-18*x+x^2) + O(x^20)) \\ _Colin Barker_, Jan 24 2016 %o A267797 (Magma) [Fibonacci(6*n+4)+Fibonacci(6*n+2): n in [1..20]]; // _Vincenzo Librandi_, Jan 24 2016 %Y A267797 Cf. A000032, A016945, A024670, A024851, A049629, A188378. %K A267797 nonn,easy %O A267797 1,1 %A A267797 _Altug Alkan_, Jan 24 2016