This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267825 #23 Feb 01 2016 05:23:51 %S A267825 0,1,2,1,1,2,2,2,3,1,1,2,1,1,3,3,3,3,5,5,6,3,3,3,3,2,2,1,1,5,1,1,2,4, %T A267825 4,2,1,1,4,1,1,5,5,5,4,4,4,4,4,3,2,2,2,5,5,2,2,2,3,3,2,2,2,3,3,3,3,5, %U A267825 5,5,3,3,3,3,6,6,6,7,5,5,5,1,1,5,1,1,6,6,6,6,1,1,6,1,1,7,7,7,3,3,3 %N A267825 Index of largest primorial factor of binomial(2n,n). %C A267825 For n > 0, binomial(2n,n) is even, so a(n) >= 1. %C A267825 Is a(n) unbounded? (The largest value for n <= 100000 is a(45416) = 43.) %C A267825 From _Robert Israel_, Jan 28 2016: (Start) %C A267825 a(n) = A000720(p)-1 where p is the least prime that does not divide A000984(n). %C A267825 Equivalently, p is the least prime such that the base-p representation of n has all digits < p/2. %C A267825 a(primorial(k)-1) >= k. In particular the sequence is unbounded. (End) %H A267825 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucas%27_theorem">Lucas' theorem</a> %F A267825 a(A267823(n)) >= n. %F A267825 min{k : a(k) >= n} = A267823(n). %e A267825 Binomial(16,8) = 12870 is divisible by primorial(3) = 2*3*5 = 30, but not by prime(4) = 7, so a(8) = 3. %t A267825 PrimorialFactor[n_] := (k = 0; While[Mod[n, Prime[k + 1]] == 0, k++]; k); %t A267825 Table[PrimorialFactor[Binomial[2 n, n]], {n, 0, 100}] %o A267825 (PARI) pf(n) = {my(k = 0); while (n % prime(k+1) == 0, k++); k;} %o A267825 a(n) = pf(binomial(2*n, n)); \\ adapted from Mathematica; _Michel Marcus_, Jan 29 2016 %Y A267825 Cf. A000720, A000984, A002110, A226078, A267823. %K A267825 nonn %O A267825 0,3 %A A267825 _Jonathan Sondow_, Jan 27 2016