cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267862 Number of planar lattice convex polygonal lines joining the origin and the point (n,n).

This page as a plain text file.
%I A267862 #29 Apr 08 2016 15:49:12
%S A267862 1,2,5,13,32,77,178,399,877,1882,3959,8179,16636,33333,65894,128633,
%T A267862 248169,473585,894573,1673704,3103334,5705383,10405080,18831761,
%U A267862 33836627,60378964,107035022,188553965,330166814,574815804,995229598,1714004131,2936857097
%N A267862 Number of planar lattice convex polygonal lines joining the origin and the point (n,n).
%C A267862 In other words, we are counting walks on the integer lattice N^2 that start at (0,0) and end at (n,n); they may take arbitrary steps, but the slopes of the steps in the walk must strictly increase. As a result, we obtain a convex polygon when joining the two endpoints of the walk with the point (0,n).
%H A267862 Vaclav Kotesovec, <a href="/A267862/b267862.txt">Table of n, a(n) for n = 0..100</a>
%H A267862 J. Bureaux, N. Enriquez, <a href="http://arxiv.org/abs/1603.09587">On the number of lattice convex chains</a>, arXiv:1603.09587 [math.PR], 2016.
%F A267862 a(n) = [x^n*y^n] 1/((1-x)*(1-y)*Product_{i>0,j>0,gcd(i,j)=1} (1-x^i*y^j)).
%F A267862 An asymptotic formula for a(n) is given by Bureaux and Enriquez: a(n) ~ e^(-2*zeta'(-1))/((2*Pi)^(7/6)*sqrt(3)*kappa^(1/18)*n^(17/18)) * e^(3*kappa^(1/3)*n^(2/3)+...) where kappa := zeta(3)/zeta(2) and zeta denotes the Riemann zeta function.
%e A267862 The two walks for n = 1 are
%e A267862 (0,0) -> (1,1)
%e A267862 (0,0) -> (1,0) -> (1,1).
%e A267862 The five possibilities for n = 2 are
%e A267862 (0,0) -> (2,2)
%e A267862 (0,0) -> (1,0) -> (2,1) -> (2,2)
%e A267862 (0,0) -> (1,0) -> (2,2)
%e A267862 (0,0) -> (2,0) -> (2,2)
%e A267862 (0,0) -> (2,1) -> (2,2).
%t A267862 a[i_Integer, j_Integer, s_] := a[i, j, s] = If[i === 0, 1, Sum[a[i - x, j - y, y/x], {x, 1, i}, {y, Floor[s*x] + 1, j}]]; a[n_Integer] := a[n] = 1 + Sum[a[n - x, n - y, y/x], {x, 1, n}, {y, 0, x - 1}]; Flatten[{1, Table[a[n], {n, 30}]}]
%t A267862 nmax = 20; p = (1 - x)*(1 - y); Do[Do[p = Expand[p*If[GCD[i, j] == 1, (1 - x^i*y^j), 1]]; p = Select[p, (Exponent[#, x] <= nmax) && (Exponent[#, y] <= nmax) &], {i, 1, nmax}], {j, 1, nmax}]; p = Expand[Normal[Series[1/p, {x, 0, nmax}, {y, 0, nmax}]]]; p = Select[p, Exponent[#, x] == Exponent[#, y] &]; Flatten[{1, Table[Coefficient[p, x^n*y^n], {n, 1, nmax}]}] (* _Vaclav Kotesovec_, Apr 08 2016 *)
%Y A267862 Cf. A002774, A090806, A219554.
%K A267862 nonn,walk
%O A267862 0,2
%A A267862 _Christoph Koutschan_, Apr 07 2016