cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267874 Total number of ON (black) cells after n iterations of the "Rule 235" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 2, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
Offset: 0

Views

Author

Robert Price, Jan 21 2016

Keywords

Comments

With the exception of the first one or two entries the same as A123968 and A028872. - R. J. Mathar, Jan 24 2016

Crossrefs

Programs

  • Mathematica
    rule=235; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)

Formula

From Colin Barker, Jan 22 2016 and Apr 20 2019: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: (1-x+3*x^2-x^4) / (1-x)^3.
(End)