This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267891 #42 Sep 08 2022 08:46:15 %S A267891 105,135,165,189,195,210,231,255,270,273,285,297,330,345,351,357,375, %T A267891 378,385,390,399,420,429,435,455,459,462,465,483,510,513,540,546,555, %U A267891 561,570,594,595,609,615,621,627,645,651,660,663,665,690,702,705,714,715,741,750,756,759,770,777,780,783,795,798,805,837 %N A267891 Numbers with 8 odd divisors. %C A267891 Positive integers that have exactly eight odd divisors. %C A267891 Numbers n such that the symmetric representation of sigma(n) has 8 subparts. - _Omar E. Pol_, Dec 29 2016 %C A267891 Numbers n such that A000265(n) has prime signature {7} or {3,1} or {1,1,1}, i.e., is in A092759 or A065036 or A007304. - _Robert Israel_, Mar 15 2018 %C A267891 Numbers that can be formed in exactly 7 ways by summing sequences of 2 or more consecutive positive integers. - _Julie Jones_, Aug 13 2018 %H A267891 Robert Israel, <a href="/A267891/b267891.txt">Table of n, a(n) for n = 1..10000</a> %F A267891 A001227(a(n)) = 8. %p A267891 filter:= proc(n) local r; %p A267891 r:= n/2^padic:-ordp(n,2); %p A267891 numtheory:-tau(r)=8 %p A267891 end proc: %p A267891 select(filter, [$1..1000]); # _Robert Israel_, Mar 15 2018 %t A267891 Select[Range@ 840, Length@ Select[Divisors@ #, OddQ] == 8 &] (* _Michael De Vlieger_, Dec 30 2016 *) %o A267891 (PARI) isok(n) = sumdiv(n, d, (d%2)) == 8; \\ after _Michel Marcus_ %o A267891 (Magma) [n: n in [1..1000] | #[d: d in Divisors(n) | IsOdd(d)] eq 8]; // _Bruno Berselli_, Apr 04 2016 %Y A267891 Column 8 of A266531. %Y A267891 Cf. A000265, A001227, A007304, A038547, A065036, A092759, A237593, A279387. %Y A267891 Numbers with exactly k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, A267697, this sequence, A267892, A267893. %K A267891 nonn %O A267891 1,1 %A A267891 _Omar E. Pol_, Apr 03 2016