A267905 Number of n X 1 0..2 arrays with every repeated value in every row unequal to the previous repeated value, and in every column equal to the previous repeated value, and new values introduced in row-major sequential order.
1, 2, 5, 13, 34, 88, 225, 569, 1426, 3548, 8777, 21613, 53026, 129712, 316545, 770993, 1874914, 4553588, 11047625, 26779909, 64869586, 157043368, 380004897, 919150313, 2222499826, 5372538572, 12984354185, 31374801373, 75801065794
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..0....1....1....1....1....1....1....1....1....1....1....1....1....1....1....0 ..1....2....2....0....2....2....2....1....2....0....2....0....2....0....2....0 ..2....2....2....0....1....1....1....1....0....1....0....1....1....0....0....1 ..0....1....2....2....2....1....2....2....0....1....0....2....0....0....0....2 ..1....0....2....0....1....1....1....1....1....1....0....0....2....2....0....1 ..2....2....2....0....2....1....2....0....0....0....1....1....2....0....0....0 ..1....2....2....1....1....1....2....2....2....1....0....1....2....0....2....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 1 of A267911.
Formula
Empirical: a(n) = 5*a(n-1) -7*a(n-2) +a(n-3) +2*a(n-4).
Conjectures from Colin Barker, Jan 11 2019: (Start)
G.f.: x*(1 - 3*x + 2*x^2 + x^3) / ((1 - x)*(1 - 2*x)*(1 - 2*x - x^2)).
a(n) = ((1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n) - 2*(2^n-1)) / 4.
(End)