A267918 Numbers n such that x^(n-5)*(x+1)^5+1 is irreducible in F2[x].
6, 9, 12, 14, 17, 23, 44, 47, 63, 84, 129, 236, 278, 279, 297, 647, 726, 737, 2574, 4233, 8207, 16046, 21983, 23999, 24596, 24849, 84929
Offset: 1
Examples
For n=6, x^(6-5)*(x+1)^5+1 = x^6 + x^5 + x^2 + x + 1 is irreducible in F_2[x].
Links
- E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8, (1941), 721-737.
Programs
-
PARI
for(n=5,10^5, if(polisirreducible(Mod(1,2)*(x^(n-5)*(x+1)^5+1)),print1(n,", "))); \\ Joerg Arndt, May 01 2016
-
Sage
P.
= GF(2)[] for n in range(6, 10^5): if (x^(n-5)*(1+x)^5+1).is_irreducible(): print(n) # Joerg Arndt, May 01 2016
Extensions
Terms a(12) and beyond from Joerg Arndt, May 01 2016
Comments