This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267939 #31 Feb 04 2016 09:57:45 %S A267939 351,621,886,920781,3524751,338752611,35247524751,920780120781, %T A267939 920879219781,3387524752611,3526124738751,338738752612611, %U A267939 352475247524751,33875247524752611,35247387526124751,35261247524738751,920780120780120781,920780219879120781,920879120780219781,920879219879219781 %N A267939 Number x = concat(MSD(x),b), where MSD = A000030 stands for Most Significant Digit, such that MSD(x)*b is equal to the reverse of x. %C A267939 If we consider numbers x = concat(a,b), where a has two digits, such that a*b is equal to the reverse of x, the first terms are 425322, 44235301, 119910901, ... %C A267939 Terms of the form 3(5247)*51, i.e. 351, 3524751, 35247524751, ..., form an infinite subsequence. - _Robert Israel_, Jan 28 2016 %C A267939 Other infinite sequences of terms include 92078(012078)*1 and 33875(2475)*2611. - _Robert Israel_, Jan 31 2016 %H A267939 Robert Israel, <a href="/A267939/b267939.txt">Table of n, a(n) for n = 1..415</a> %e A267939 3*51 = 153; %e A267939 6*21 = 126; %e A267939 3*524751 = 1574253. %p A267939 T:=proc(w) local x, y, z; x:=w; y:=0; %p A267939 for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: %p A267939 P:=proc(q) local a,b,n; for n from 1 to q do a:=n mod 10; b:=trunc(n/10^ilog10(n)); %p A267939 if (a=1 and b>1) or (a=6 and (b=2 or b=4 or b=6 or b=8)) or (b=5 and (a=3 or a=5 or a=7 or a=9)) then %p A267939 if T(n)=b*(n mod 10^ilog10(n)) then print(n); fi; fi; od; end: P(10^10); %p A267939 # alternative: %p A267939 N:= 20: # to get all terms with at most N digits. %p A267939 extend:= proc(d,psol,eqs) %p A267939 local peqs, cvars, bvars, ncs, res,T, cs, ceqs, sol, svals; %p A267939 peqs:= subs(psol, eqs); %p A267939 cvars,bvars:= selectremove(t -> op(0,t) = 'c',indets(peqs)); %p A267939 ncs:= nops(cvars); %p A267939 res:= NULL; %p A267939 if ncs >= 1 then %p A267939 T:= combinat:-cartprod([[$0..d-1]$ncs]); %p A267939 while not T[finished] do %p A267939 cs:= T[nextvalue](); %p A267939 cs:= seq(cvars[i]=cs[i],i=1..ncs); %p A267939 ceqs:= subs(cs,peqs); %p A267939 sol:= solve(ceqs,bvars); svals:= map(rhs,sol); %p A267939 if indets(svals) <> {} then error("Oops: %1",svals) fi; %p A267939 if svals::set(nonnegint) and max(svals) <= 9 then %p A267939 res:= res, [op(psol), cs, op(sol)]; %p A267939 fi %p A267939 od %p A267939 else %p A267939 sol:= solve(peqs,bvars); %p A267939 svals:= map(rhs,sol); %p A267939 if indets(svals) <> {} then error("Oops: %1",svals) fi; %p A267939 if svals::set(nonnegint) and max(svals) <= 9 then %p A267939 res:= [op(psol), op(sol)]; %p A267939 fi %p A267939 fi; %p A267939 [res] %p A267939 end proc: %p A267939 G:= proc(d,n) %p A267939 local eqs, i, rs, b0s; %p A267939 eqs:= [d*b[0] - d - 10*c[0], %p A267939 seq(d*b[i]+c[i-1] - b[n-i] - 10*c[i], i=1..n-2), %p A267939 d*b[n-1] + c[n-2] - b[1] - 10*b[0]]; %p A267939 b0s:= [msolve(eqs[1] mod 10,10)]; %p A267939 rs:= select(t -> (map(rhs,t))::set(nonnegint), %p A267939 map(t -> t union solve(eval(eqs[1],t),{c[0]}),b0s)); %p A267939 for i from 1 to floor(n/2) do %p A267939 rs:= map(s -> op(extend(d,s,{eqs[i+1],eqs[-i]})), rs); %p A267939 od; %p A267939 sort(map(s -> d*10^n + subs(s, add(10^i*b[i],i=0..n-1)), rs)); %p A267939 end proc: %p A267939 A:= NULL; %p A267939 for n from 2 to N-1 do %p A267939 for d from 3 to 9 do %p A267939 res:= G(d,n); %p A267939 if res <> [] then %p A267939 A:= A, op(res); %p A267939 fi %p A267939 od %p A267939 od: %p A267939 A; # _Robert Israel_, Feb 01 2016 %t A267939 Select[Range@ 4000000, First[#] FromDigits@ Rest@ # == FromDigits@ Reverse@ # &@ IntegerDigits@ # &] (* _Michael De Vlieger_, Jan 29 2016 *) %Y A267939 Cf. A000030, A004086. %K A267939 base,nonn %O A267939 1,1 %A A267939 _Paolo P. Lava_, Jan 22 2016 %E A267939 a(7) to a(20) from _Robert Israel_, Feb 01 2016