A267960 Number of n X 1 0..2 arrays with every repeated value in every row and column greater than the previous repeated value.
3, 9, 24, 63, 159, 394, 957, 2292, 5419, 12678, 29385, 67560, 154215, 349770, 788741, 1769388, 3950499, 8782094, 19445313, 42898032, 94315743, 206709714, 451711869, 984397108, 2139750939, 4639901334, 10038505657, 21672089592, 46693408599
Offset: 1
Keywords
Examples
Some solutions for n=8: ..1....0....1....1....0....2....0....0....2....1....1....1....2....0....2....0 ..2....1....0....1....2....1....2....2....2....2....2....0....0....2....1....1 ..0....0....2....2....0....1....0....1....1....0....2....1....1....1....0....1 ..2....0....1....2....1....2....2....0....0....2....0....1....0....2....1....0 ..0....1....1....0....2....1....0....0....2....0....2....0....2....0....1....2 ..1....2....0....1....1....2....0....1....0....1....1....2....0....2....0....0 ..2....0....2....0....0....1....2....2....2....0....0....2....1....0....2....1 ..2....2....2....2....0....0....2....0....1....1....2....0....2....2....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A267966.
Formula
Empirical: a(n) = 6*a(n-1) - 9*a(n-2) - 8*a(n-3) + 24*a(n-4) - 16*a(n-6).
Conjectures from Colin Barker, Feb 25 2018: (Start)
G.f.: x*(3 - 9*x - 3*x^2 + 24*x^3 - 3*x^4 - 17*x^5) / ((1 + x)^2*(1 - 2*x)^4).
a(n) = (96*n + 2^n*(9*n*(n*(n+44)+445)+7622) + 640) / 7776 for n even.
a(n) = (2^n*(9*n*(n*(n+44)+445)+7622) - 32*(3*n+20)) / 7776 for n odd.
(End)
Comments