cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267967 Integers n such that n^n is the sum of two nonzero squares while n is not.

Original entry on oeis.org

30, 60, 70, 78, 102, 110, 120, 140, 150, 156, 174, 182, 190, 204, 210, 220, 222, 230, 238, 240, 246, 270, 280, 286, 300, 310, 312, 318, 330, 348, 350, 364, 366, 374, 380, 390, 406, 408, 420, 430, 438, 440, 444, 460, 470, 476, 480, 492, 494, 510, 518, 534, 540, 546, 550, 560
Offset: 1

Views

Author

Altug Alkan, Jan 22 2016

Keywords

Comments

Terms that are not divisible by 10 are 78, 102, 156, 174, 182, 204, 222, 238, 246, 286, 312, 318, 348, 364, 366, 374, 406, 408, 438, 444, 476, 492, 494, 518, 534, 546, 572, 574, 582, 598, 606, 624, 636, 638, 646, 654, 678, 696, 728, ...
If k^2 is the sum of 2 nonzero squares, (2*k)^(2*k) is. (2*k)^(2*k) = 2^(2*k) * k^(2*k) = (2^k)^2 * k^2 * k^(2*k-2) = (2^k)^2 * k^2 * (k^(k-1))^2. So if k^2 = a^2 + b^2, then (2*k)^(2*k) = (k^(k-1)*2^k*a)^2 + (k^(k-1)*2^k*b)^2. And if k^2 = a^2 + b^2 and k is not the sum of 2 nonzero squares, 2*k is not the sum of 2 nonzero squares. So 2 * A162592(n) appears in this sequence. Note that all terms appear as even numbers.

Examples

			30 is a term because 30 is not the sum of 2 nonzero squares and 30^30 = 8609344200000000000000^2 + 11479125600000000000000^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 120, SquaresR[2, #] == 0 && Resolve[Exists[{a, b}, Reduce[#^# == (a^2 + b^2), {a, b}, Integers], a > b > 0]] &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2));}
    for(n=1, 1e3, if(isA000404(n^n) && !isA000404(n), print1(n, ", ")));