A267967 Integers n such that n^n is the sum of two nonzero squares while n is not.
30, 60, 70, 78, 102, 110, 120, 140, 150, 156, 174, 182, 190, 204, 210, 220, 222, 230, 238, 240, 246, 270, 280, 286, 300, 310, 312, 318, 330, 348, 350, 364, 366, 374, 380, 390, 406, 408, 420, 430, 438, 440, 444, 460, 470, 476, 480, 492, 494, 510, 518, 534, 540, 546, 550, 560
Offset: 1
Keywords
Examples
30 is a term because 30 is not the sum of 2 nonzero squares and 30^30 = 8609344200000000000000^2 + 11479125600000000000000^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 120, SquaresR[2, #] == 0 && Resolve[Exists[{a, b}, Reduce[#^# == (a^2 + b^2), {a, b}, Integers], a > b > 0]] &] (* Michael De Vlieger, Jan 24 2016 *)
-
PARI
isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2));} for(n=1, 1e3, if(isA000404(n^n) && !isA000404(n), print1(n, ", ")));
Comments