This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267968 #28 Feb 19 2024 04:08:11 %S A267968 1,1,8,648,663552,10368000000,2902376448000000, %T A267968 16731622649806848000000,2245680377810414777401344000000, %U A267968 7830203310981140781182893575634944000000,783020331098114078118289357563494400000000000000000,2457453226667794121573260254679367673480373862400000000000000000 %N A267968 a(n) = Product_{k = 1..n} k^(k + 1). %H A267968 G. C. Greubel, <a href="/A267968/b267968.txt">Table of n, a(n) for n = 0..35</a> %F A267968 a(n) = n! * A002109(n). - _Vaclav Kotesovec_, Jan 26 2016 %F A267968 a(n) = (n!)^2 * abs(A203421(n)). - _Michel Marcus_, Feb 11 2016 %p A267968 a:= proc(n) a(n):= `if`(n=0, 1, a(n-1)*n^(n+1)) end: %p A267968 seq(a(n), n=0..12); # _Alois P. Heinz_, Feb 10 2016 %t A267968 a[n_]:= Product[k^(k+1), {k,n}]; Table[a[n], {n, 0, 20}] %t A267968 Table[Hyperfactorial[n]*n!, {n, 0, 15}] (* _Vaclav Kotesovec_, Jan 26 2016 *) %o A267968 (Magma) [&*[k^(k+1): k in [1..n]]: n in [1..11]]; // _Vincenzo Librandi_, Jan 23 2016 %o A267968 (PARI) a(n) = prod(k=1, n, k^(k+1)); \\ _Michel Marcus_, Jan 23 2016 %o A267968 (SageMath) [product(k^(k+1) for k in range(1,n+1)) for n in range(21)] # _G. C. Greubel_, Feb 18 2024 %Y A267968 Cf. A002109 (Product_{k = 1..n} k^k), A203421 (Product_{k = 1..n} k^(k-1), up to sign). %K A267968 nonn %O A267968 0,3 %A A267968 _José María Grau Ribas_, Jan 22 2016