A267983 Integers n such that n^3 = (x^2 + y^2 + z^2) / 3 where x > y > z > 0, is soluble.
3, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94
Offset: 1
Keywords
Examples
3 is a term since 3^3 is the average of 1^2, 4^2, 8^2. 3^3 = (1^2 + 4^2 + 8^2) / 3.
Programs
-
Mathematica
Select[Range@ 94, Resolve[Exists[{x, y, z}, Reduce[#^3 == (x^2 + y^2 + z^2)/3, {x, y, z}, Integers], x > y > z > 0]] &] (* Michael De Vlieger, Jan 24 2016 *)
-
PARI
isA004432(n) = for(x=1, sqrtint(n\3), for(y=x+1, sqrtint((n-1-x^2)\2), issquare(n-x^2-y^2) && return(1))); for(n=1, 1e2, if(isA004432(3*n^3), print1(n, ", ")));
Comments