cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267983 Integers n such that n^3 = (x^2 + y^2 + z^2) / 3 where x > y > z > 0, is soluble.

Original entry on oeis.org

3, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94
Offset: 1

Views

Author

Altug Alkan, Jan 23 2016

Keywords

Comments

Motivation was this simple question: What are the cubes that are the averages of 3 nonzero distinct squares?
Corresponding cubes are 27, 216, 343, 729, 1000, 1331, 1728, 2744, 3375, 4913, 5832, 6859, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 27000, ...
Complement of this sequence for positive integers is 1, 2, 4, 5, 8, 13, 16, 20, 21, 29, 32, 37, 45, 52, 53, 61, 64, 69, 77, ...
The positive cubes that are not the averages of 3 nonzero distinct squares are 1, 8, 64, 125, 512, 2197, 4096, 8000, 9261, 24389, 32768, 50653, 91125, ...

Examples

			3 is a term since 3^3 is the average of 1^2, 4^2, 8^2. 3^3 = (1^2 + 4^2 + 8^2) / 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 94, Resolve[Exists[{x, y, z}, Reduce[#^3 == (x^2 + y^2 + z^2)/3, {x, y, z}, Integers], x > y > z > 0]] &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    isA004432(n) = for(x=1, sqrtint(n\3), for(y=x+1, sqrtint((n-1-x^2)\2), issquare(n-x^2-y^2) && return(1)));
    for(n=1, 1e2, if(isA004432(3*n^3), print1(n, ", ")));