This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A267984 #18 Sep 10 2022 07:36:06 %S A267984 17,23,47,53,77,83,107,113,137,143,167,173,197,203,227,233,257,263, %T A267984 287,293,317,323,347,353,377,383,407,413,437,443,467,473,497,503,527, %U A267984 533,557,563,587,593,617,623,647,653,677,683,707,713,737,743,767,773 %N A267984 Numbers congruent to {17, 23} mod 30. %C A267984 Union of A128468 and A128473. %C A267984 For all k >= 1 the numbers 2^k + a(n) and a(n)*2^k + 1 do not form a pair of primes, where n is any positive integer. %H A267984 Colin Barker, <a href="/A267984/b267984.txt">Table of n, a(n) for n = 1..1000</a> %H A267984 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A267984 a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. %F A267984 G.f.: x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2). %F A267984 a(n) = a(n-2) + 30. %F A267984 a(n) = 10*(3*n - 2) - a(n-1). %F A267984 From _Colin Barker_, Jan 24 2016: (Start) %F A267984 a(n) = (30*n - 9*(-1)^n - 5)/2 for n>0. %F A267984 a(n) = 15*n - 7 for n>0 and even. %F A267984 a(n) = 15*n + 2 for n odd. %F A267984 (End) %F A267984 E.g.f.: 7 + ((30*x - 5)*exp(x) - 9*exp(-x))/2. - _David Lovler_, Sep 10 2022 %t A267984 LinearRecurrence[{1, 1, -1}, {17, 23, 47}, 52] %o A267984 (Magma) [n: n in [0..773] | n mod 30 in {17, 23}]; %o A267984 (PARI) Vec(x*(17 + 6*x + 7*x^2)/((1 + x)*(1 - x)^2) + O(x^53)) %Y A267984 Cf. A128468, A128473, A267985. %K A267984 nonn,easy %O A267984 1,1 %A A267984 _Arkadiusz Wesolowski_, Jan 23 2016