This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268049 #4 Jan 25 2016 10:52:56 %S A268049 1,2,2,4,14,4,12,159,122,7,40,3183,9054,938,12,154,88243,1650058, %T A268049 467899,6734,20,656,3222467,525124941,829256141,22309009,45938,33, %U A268049 3074,147078491,262999737747,3273871468927,386602239495,999810316,302402,54 %N A268049 T(n,k)=Number of nXk 0..k arrays with every repeated value in every row unequal to, and in every column equal to, the previous repeated value, and new values introduced in row-major sequential order. %C A268049 Table starts %C A268049 ..1.......2...........4..............12................40...............154 %C A268049 ..2......14.........159............3183.............88243...........3222467 %C A268049 ..4.....122........9054.........1650058.........525124941......262999737747 %C A268049 ..7.....938......467899.......829256141.....3273871468927.24754240745963975 %C A268049 .12....6734....22309009....386602239495.19146833412153174 %C A268049 .20...45938...999810316.168939588471080 %C A268049 .33..302402.42764566838 %C A268049 .54.1939154 %C A268049 .88 %H A268049 R. H. Hardin, <a href="/A268049/b268049.txt">Table of n, a(n) for n = 1..48</a> %F A268049 Empirical for column k: %F A268049 k=1: a(n) = 2*a(n-1) -a(n-3) %F A268049 k=2: a(n) = 14*a(n-1) -60*a(n-2) +50*a(n-3) +145*a(n-4) -80*a(n-5) -84*a(n-6) +16*a(n-7) %F A268049 k=3: [order 78] %e A268049 Some solutions for n=5 k=4 %e A268049 ..0..0..1..0....0..0..1..0....0..0..1..0....0..0..1..0....0..0..1..0 %e A268049 ..0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..0....0..1..0..0 %e A268049 ..2..0..0..1....2..1..0..3....1..0..0..1....1..1..0..2....2..0..0..3 %e A268049 ..3..0..0..2....4..0..0..4....0..2..0..3....0..1..0..3....4..4..0..1 %e A268049 ..4..2..4..1....3..2..0..1....0..2..0..1....3..4..0..2....1..1..3..0 %Y A268049 Column 1 is A000071(n+2). %Y A268049 Column 2 is A267906. %Y A268049 Row 1 is A268010. %Y A268049 Row 2 is A268011. %K A268049 nonn,tabl %O A268049 1,2 %A A268049 _R. H. Hardin_, Jan 25 2016