cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268058 Maximum value of n-th row of A268057.

This page as a plain text file.
%I A268058 #25 Jan 05 2025 19:51:40
%S A268058 1,1,2,2,3,2,3,3,3,3,5,3,4,4,3,3,5,4,6,4,4,5,6,3,5,4,5,4,5,4,6,4,5,6,
%T A268058 7,4,5,6,5,4,6,4,6,5,5,7,8,4,7,5,6,5,9,5,6,5,6,6,8,4,7,6,6,5,7,5,8,7,
%U A268058 7,7,6,4,6,6,5,7,7,6,8,5,5,6,9,5,6,6,7
%N A268058 Maximum value of n-th row of A268057.
%H A268058 Peter Kagey, <a href="/A268058/b268058.txt">Table of n, a(n) for n = 1..10000</a>
%H A268058 Zachary Chase and Mayank Pandey, <a href="https://arxiv.org/abs/2211.08374">On the length of Pierce expansions</a>, arXiv preprint (2022). arXiv:2211.08374 [math.NT]
%H A268058 P. Erdős and J. O. Shallit, <a href="http://archive.numdam.org/ARCHIVE/JTNB/JTNB_1991__3_1/JTNB_1991__3_1_43_0/JTNB_1991__3_1_43_0.pdf">New bounds on the length of finite Pierce and Engel series</a>, Journal de Théorie des Nombres de Bordeaux 3:1 (1991), pp. 43-53.
%H A268058 Vlado Kešelj, <a href="https://cs.uwaterloo.ca/research/tr/1996/21/cs-96-21.pdf">Length of finite Pierce series: theoretical analysis and numerical calculations</a> (1996), 27 pp.
%H A268058 J. O. Shallit, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/24-1/shallit.pdf">Metric theory of Pierce expansions</a>, Fibonacci Quart. 24 (1986), pp. 22-40.
%H A268058 Reddit user zifyoip, <a href="https://www.reddit.com/r/math/comments/409dfe/does_anyone_know_anything_about_this_idea_i/cysj882">First 100 terms.</a>
%H A268058 <a href="/index/El#Engel">Index entries for sequences related to Engel expansions</a>
%F A268058 Chase & Pandey prove that a(n) = O(n^e) for any e > 19/59 = 0.322..., improving on Kešelj, Erdős & Shallit, and Shallit. - _Charles R Greathouse IV_, Jan 13 2023
%o A268058 (PARI) P(a,b)=my(n); while(b, b=a%b; n++); n
%o A268058 a(n)=my(t=1); for(b=2,n-1, t=max(P(n,b),t)); t \\ _Charles R Greathouse IV_, Nov 26 2016
%Y A268058 Cf. A268057, A268059, A268060.
%K A268058 nonn
%O A268058 1,3
%A A268058 _Peter Kagey_, Jan 25 2016