cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A268059 a(n) is the number of k such that A268057(n, k) = A268058(n).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4, 2, 1, 1, 1, 1, 1, 2, 5, 1, 4, 2, 3, 5, 2, 1, 3, 2, 1, 1, 2, 5, 1, 4, 3, 1, 5, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 2, 4, 1, 1, 2, 3, 2, 6, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 6, 7, 5, 2, 7, 1, 5, 1, 2, 3, 10, 3, 2, 2, 2, 4, 2
Offset: 1

Views

Author

Peter Kagey, Jan 25 2016

Keywords

Crossrefs

A268060 Least k such that A268057(n, k) = A268058(n).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 8, 9, 10, 11, 12, 13, 13, 14, 14, 13, 16, 15, 16, 17, 16, 17, 20, 19, 20, 25, 22, 22, 21, 24, 22, 23, 24, 23, 27, 28, 29, 29, 30, 29, 31, 32, 31, 33, 32, 32, 36, 33, 35, 35, 34, 34, 37, 39, 38, 41, 41, 40, 43, 43, 44
Offset: 1

Views

Author

Peter Kagey, Jan 25 2016

Keywords

Comments

a(n) > n/2 for all n > 2.

Crossrefs

A268057 Triangle T(n,k), 1<=k<=n, read by rows: T(n,k) = number of iterations of A048158(n, A048158(n, ... A048158(n, k)...)) to reach 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 2, 3, 4, 2, 3, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 3, 4, 3
Offset: 1

Views

Author

Peter Kagey, Jan 25 2016

Keywords

Comments

Each column is periodic: T(n+A003418(k),k) = T(n,k). - Robert Israel, Feb 02 2016

Examples

			T(5, 3) = 3 because the algorithm requires three steps to reach 0.
  5 % 3 = 2
  5 % 2 = 1
  5 % 1 = 0
Triangle begins:
  1
  1 1
  1 2 1
  1 1 2 1
  1 2 3 2 1
  1 1 1 2 2 1
  1 2 2 3 3 2 1
  1 1 2 1 3 2 2 1
  1 2 1 2 3 2 3 2 1
  1 1 2 2 1 3 3 2 2 1
  1 2 3 4 2 3 5 4 3 2 1
  1 1 1 1 2 1 3 2 2 2 2 1
		

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember; local m;
         if k = 0 then 0 else 1 + procname(n,n mod k) fi
    end proc:
    seq(seq(T(n,k),k=1..n),n=1..30); # Robert Israel, Feb 02 2016
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == 0, 0, 1 + T[n, Mod[n, k]]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 30}] // Flatten (* Jean-François Alcover, Jan 31 2023, after Robert Israel *)

A006538 Worst cases for Pierce expansions (denominators).

Original entry on oeis.org

1, 3, 5, 11, 11, 19, 35, 47, 53, 95, 103, 179, 251, 299, 503, 743, 1019, 1319, 1439, 2939, 3359, 3959, 5387, 5387, 5879, 5879, 17747, 17747, 23399, 23399, 23399, 23399, 23399, 23399, 93596, 186479, 186479, 278387, 442679, 493919, 493919, 493919, 830939, 1371719, 1371719, 1371719, 1371719, 1371719, 1371719
Offset: 1

Views

Author

Keywords

Comments

See A006537 for numerators.
a(58) <= 58017959. - Hiroaki Yamanouchi, Aug 31 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

RECORDS transform of A268058.

Programs

  • PARI
    P(a, b)=my(n); while(b, b=a%b; n++); n
    A268058(n)=my(t=1); for(b=2, n-1, t=max(P(n, b), t)); t
    a(n,startAt=1)=while(A268058(startAt) < n, startAt++); startAt \\ Charles R Greathouse IV, Jan 14 2023

Formula

Chase & Pandey prove that a(n) >> n^e for some e > 59/19 = 3.105..., improving on Kešelj, Erdős & Shallit, and Shallit. - Charles R Greathouse IV, Jan 14 2023

Extensions

Description corrected May 15 1995 and again Nov 07 2006
a(38)-a(49) (from Keselj report) added by R. J. Mathar, Jun 30 2008
Showing 1-4 of 4 results.