This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268063 #26 Sep 08 2022 08:46:15 %S A268063 7,47,599,1567,5807,7487,9463,20807,24623,28879,33599,81647,111599, %T A268063 123007,161839,225263,262399,282407,397807,541007,573247,606743, %U A268063 641519,922807,1115399,1513727,1577383,1709999,1779007,1849847,1997119,2399039,2573807,2948399 %N A268063 Primes of the form (k^3 - k^2 - k - 1)/2 for some integer k > 0. %C A268063 Also primes of the form 4*k^3 + 4*k^2 - 1. %H A268063 G. C. Greubel, <a href="/A268063/b268063.txt">Table of n, a(n) for n = 1..3240</a> %e A268063 k=15: (15^3 - 15^2 - 15 - 1)/2 = 1567 (is prime). %t A268063 Select[Table[(n^3 - n^2 - n - 1) / 2, {n, 200}], PrimeQ] (* _Vincenzo Librandi_, Jan 26 2016 *) %o A268063 (Sage) [(k^3-k^2-k-1)/2 for k in [2*i+1 for i in [1..100]] if is_prime(Integer((k^3-k^2-k-1)/2))] # _Tom Edgar_, Jan 25 2016 %o A268063 (Magma) [a: n in [0..200] | IsPrime(a) where a is (n^3-n^2-n-1) div 2 ]; // _Vincenzo Librandi_, Jan 26 2016 %o A268063 (PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(p=4*n^3+4*n^2-1), print1(p, ", "))); \\ _Altug Alkan_, Mar 14 2016 %Y A268063 Cf. A004771, A042991, A168489. %K A268063 nonn,easy %O A268063 1,1 %A A268063 _Emre APARI_, Jan 25 2016 %E A268063 More terms from _Tom Edgar_, Jan 25 2016