cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268079 T(n,k)=Number of nXk nonnegative integer arrays with new values introduced in each row and column in sequential order starting with zero.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 18, 8, 1, 1, 16, 86, 86, 16, 1, 1, 32, 422, 1094, 422, 32, 1, 1, 64, 2094, 15106, 15106, 2094, 64, 1, 1, 128, 10438, 216734, 637358, 216734, 10438, 128, 1, 1, 256, 52126, 3168306, 29309170, 29309170, 3168306, 52126, 256, 1, 1, 512
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2016

Keywords

Comments

Table starts
.1...1......1.........1.............1.................1.....................1
.1...2......4.........8............16................32....................64
.1...4.....18........86...........422..............2094.................10438
.1...8.....86......1094.........15106............216734...............3168306
.1..16....422.....15106........637358..........29309170............1412290158
.1..32...2094....216734......29309170........4617638834..........795460720710
.1..64..10438...3168306....1412290158......795460720710.......517992936833258
.1.128..52126..46777214...69903748498...144635795908942....369867566612849678
.1.256.260502.694585586.3516426536462.27199854725237562.280350778114908738774

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..0..1....0..0..0..0....0..1..0..1....0..1..1..0....0..0..1..0
..0..1..1..1....0..1..1..1....0..0..1..2....0..0..1..0....0..0..1..1
..0..0..1..2....0..1..2..1....0..1..1..0....0..1..0..0....0..0..0..1
		

Crossrefs

Column 2 is A000079(n-1).
Column 3 is A082685(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 7*a(n-1) -10*a(n-2)
k=4: a(n) = 36*a(n-1) -463*a(n-2) +2640*a(n-3) -6700*a(n-4) +6000*a(n-5)
k=5: [order 14]
k=6: [order 45]