A268081 Least positive integer k such that 3^n-1 and k^n-1 are relatively prime.
2, 2, 2, 10, 2, 28, 2, 10, 2, 22, 10, 910, 2, 2, 2, 170, 2, 3458, 2, 110, 2, 46, 10, 910, 2, 2, 2, 290, 2, 9548, 2, 340, 10, 2, 22, 639730, 2, 2, 2, 4510, 2, 1204, 10, 230, 2, 94, 2, 216580, 2, 22, 2, 530, 2, 3458, 22, 580, 2, 118, 2, 18928910
Offset: 1
Keywords
Examples
Since 3^5-1 = 242 and 2^5-1 = 31 are relatively prime, a(5) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t,F,m,k,v; t:= 3^n-1; F:= select(isprime,map(`+`,numtheory:-divisors(n),1)); m:= convert(select(s -> t mod s = 0, F),`*`); for k from m by m do v:= k &^ n - 1 mod t; if igcd(v, t) = 1 then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Nov 20 2024
-
Mathematica
Table[k = 1; While[! CoprimeQ[3^n - 1, k^n - 1], k++]; k, {n, 59}] (* Michael De Vlieger, Jan 27 2016 *)
-
PARI
a(n) = {k=1; while( gcd(3^n-1, k^n-1)!=1, k++); k; }
-
Sage
def min_k(n): g, k=2, 0 while g!=1: k=k+1 g=gcd(3^n-1, k^n-1) return k print([min_k(n) for n in [1..60]])
Comments