A269435 T(n,k)=Number of length-n 0..k arrays with no repeated value greater than the previous repeated value.
2, 3, 4, 4, 9, 8, 5, 16, 27, 15, 6, 25, 64, 78, 28, 7, 36, 125, 250, 222, 51, 8, 49, 216, 615, 964, 622, 92, 9, 64, 343, 1281, 2995, 3674, 1722, 164, 10, 81, 512, 2380, 7536, 14455, 13868, 4719, 290, 11, 100, 729, 4068, 16408, 44021, 69235, 51917, 12821, 509, 12, 121
Offset: 1
Examples
Some solutions for n=6 k=4 ..1. .2. .3. .3. .2. .2. .2. .4. .3. .2. .3. .4. .3. .2. .1. .2 ..4. .3. .3. .4. .0. .0. .4. .3. .1. .0. .2. .3. .4. .0. .3. .4 ..3. .0. .1. .3. .3. .0. .3. .4. .3. .4. .3. .3. .3. .3. .4. .0 ..3. .4. .3. .2. .1. .0. .3. .2. .1. .3. .4. .3. .2. .0. .0. .0 ..3. .1. .4. .2. .2. .2. .2. .4. .3. .0. .3. .3. .3. .4. .4. .2 ..2. .4. .3. .1. .3. .3. .0. .4. .2. .1. .2. .0. .0. .3. .4. .3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 6*a(n-1) -9*a(n-2) -4*a(n-3) +9*a(n-4) +6*a(n-5) +a(n-6)
k=3: [order 8]
k=4: [order 10]
k=5: [order 12]
k=6: [order 14]
k=7: [order 16]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + 2*n + 1
n=3: a(n) = n^3 + 3*n^2 + 3*n + 1
n=4: a(n) = n^4 + 4*n^3 + (11/2)*n^2 + (7/2)*n + 1
n=5: a(n) = n^5 + 5*n^4 + (17/2)*n^3 + 8*n^2 + (9/2)*n + 1
n=6: a(n) = n^6 + 6*n^5 + 12*n^4 + (44/3)*n^3 + (23/2)*n^2 + (29/6)*n + 1
n=7: a(n) = n^7 + 7*n^6 + 16*n^5 + (71/3)*n^4 + (139/6)*n^3 + (43/3)*n^2 + (35/6)*n + 1
Comments