cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268107 Decimal expansion of 'lambda', a Somos quadratic recurrence constant mentioned by Steven Finch.

This page as a plain text file.
%I A268107 #60 Feb 16 2025 08:33:30
%S A268107 3,9,9,5,2,4,6,6,7,0,9,6,7,9,9,4,6,5,5,2,5,0,3,3,4,7,4,3,3,2,2,5,8,3,
%T A268107 3,2,2,1,7,3,6,9,8,5,4,6,7,5,9,9,6,8,9,7,7,3,6,7,0,0,5,2,8,9,4,8,5,3,
%U A268107 0,7,3,7,0,2,7,1,2,5,9,3,4,5,6,6,3,4,9,2,0,9,8,2,0,2,5,7,5,7,4,3,3,3,1,0,0,1,6,6,7,5,1,6,4,6,9,6,4,7,4,5,6,4,4,9,8,4,5
%N A268107 Decimal expansion of 'lambda', a Somos quadratic recurrence constant mentioned by Steven Finch.
%C A268107 [Quoted from _Steven Finch_] Another Somos constant lambda = 0.3995246670... arises as follows: If k < lambda, then the sequence h_0 = 0, h_1 = k, h_n = h_(n-1)*(1 + h_(n-1) - h_(n-2)) for n>=2 converges to a limit less than 1; if k > lambda, then the sequence diverges to infinity. This is similar to Grossman's constant.
%C A268107 A heuristical evaluation of lambda = 0.39952466709679946552503347433225833221736985467599... was communicated to me by _Jon E. Schoenfield_ in a private email.
%D A268107 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic Recurrence Constants, p. 446.
%H A268107 Steven R. Finch, <a href="https://arxiv.org/abs/2409.03510">A Deceptively Simple Quadratic Recurrence</a>, arXiv:2409.03510 [math.NT], 2024. See p. 9.
%H A268107 Jon E. Schoenfield, <a href="/A268107/a268107.txt">Magma program</a> communicated to J.-F. Alcover.
%H A268107 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/SomossQuadraticRecurrenceConstant.html">Somos's Quadratic Recurrence Constant</a>
%F A268107 Conjecture: lambda is the radius of convergence of the function Sum_{n>=0} A045761(n)*x^n, that is the constant 1/d computed by _Vaclav Kotesovec_ in A045761.
%e A268107 0.39952466709679946552503347433225833221736985467599689773670052894853...
%t A268107 n0 (* initial number of terms *) = 2*10^7; iter = 10^5; dn = 10^6; k1 = 0.3; k2 = 0.4; eps = 10^-16; f[k_?NumericQ] := (h0 = 0; h1 = k; h2 = k*(1+k); Do[h0 = h1; h1 = h2; h2 = Min[h1 + (h1-h0), h1*(1+h1-h0)], {iter}]; h2); Clear[g]; g[n0] = k1; g[n = n0+dn] = k2; g[n_] := g[n] = k /. FindRoot[f[k]==1, {k, g[n-dn] }]; While[Print[n, " ", g[n] // RealDigits]; Abs[g[n] - g[n-dn]] > eps, n = n+dn]; lambda = g[n]; RealDigits[lambda][[1]][[1;;9]]
%o A268107 (Magma) // See the link to _Jon E. Schoenfield_'s program.
%Y A268107 Cf. A045761, A085835, A112302.
%K A268107 cons,nonn
%O A268107 0,1
%A A268107 _Jean-François Alcover_, Jan 26 2016
%E A268107 Extended to 127 digits using _Jon E. Schoenfield_'s evaluation, Aug 27 2016