cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268132 If a(n) is a square (and n > 1), then a(n+1) = a(n) + a(n-1), else a(n+1) is the smallest positive integer not occurring earlier.

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 6, 8, 9, 17, 10, 11, 12, 13, 14, 15, 16, 31, 18, 19, 20, 21, 22, 23, 24, 25, 49, 74, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 71, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 127, 65, 66, 67, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81, 161
Offset: 1

Views

Author

M. F. Hasler, Jan 26 2016

Keywords

Comments

A variant of the sequence A267758 where the relation has to hold for prime numbers rather than for squares.
Conjectured to be a permutation of the positive integers (which could be enforced by definition). In case there would occur a duplicate, it must be of the form a(n+1) = a(n) + a(n-1) and equal to an earlier term a(m+1) of the same form, where furthermore the predecessor a(m-1) also is of that form, since otherwise a(m+1) would be smaller than this a(n+1). This seems extremely unlikely to happen, and maybe provably impossible.

Examples

			a(26) = 25 is a square, thus followed by a(26) + a(25) = 25 + 24 = 49 which is again a square, thus followed by 49 + 25 = 74. Where is the next occurrence of two subsequent squares?
		

Programs

  • PARI
    a(n,show=0,is=x->issquare(x),a=[1],L=0,U=[])={while(#aL+1,U=setunion(U,[a[#a]]),L++;while(#U&&U[1]<=L+1,U=U[^1];L++));a=concat(a,if(!is(a[#a])||#a<2,L+1,a[#a]+a[#a-1])));if(type(show)=="t_VEC",a,a[#a])}