cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268150 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 8, 2496, 177120, 7616000, 255780000, 7410154752, 194544814464, 4760448675840, 110493063252000, 2461297261280000, 53051182041906048, 1113060644163127296, 22833886572836393600, 459594580755139200000, 9100826722891800000000, 177680489488222659379200, 3426237501864596491802400
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Lemma 1 of Brent et al. article.

Crossrefs

Programs

  • Maple
    A268150 := proc(n)
        add( add( binomial(2*n,n+k)*binomial(2*n,n+l)*abs(k^2-l^2)^3,l=-n..n),k=-n..n) ;
    end proc:
    seq(A268150(n),n=0..10) ; # R. J. Mathar, Feb 27 2023
  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3));

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^3).
Conjecture D-finite with recurrence -(4621*n-8921)*(n-1)^2*a(n) +4*(148256*n^3 -1055204*n^2 +2794799*n -2529792)*a(n-1) -64*(32443*n- 32400)*(2*n-3)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Feb 27 2023