This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268152 #22 Feb 11 2016 09:24:26 %S A268152 0,8,8832,1228800,79364096,3562536960,129276837888,4079413624832, %T A268152 116608362086400,3096396542509056,77661255048888320, %U A268152 1861218099127123968,42980384518787039232,962362945373732864000,20993511648589057622016,447858123072052742062080,9371462498278516088373248 %N A268152 A double binomial sum involving absolute values. %C A268152 A fast algorithm follows from Theorem 5 of Brent et al. article. %H A268152 Colin Barker, <a href="/A268152/b268152.txt">Table of n, a(n) for n = 0..800</a> %H A268152 Richard P. Brent, Hideyuki Ohtsuka, Judy-anne H. Osborn, Helmut Prodinger, <a href="http://arxiv.org/abs/1411.1477">Some binomial sums involving absolute values</a>, arXiv:1411.1477v2 [math.CO], 2016. %H A268152 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (80,-2560,40960,-327680,1048576). %F A268152 a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^4). %F A268152 From _Colin Barker_, Feb 11 2016: (Start) %F A268152 a(n) = 4^(2*n-1)*n*(36*n^3-84*n^2+67*n-17). %F A268152 a(n) = 80*a(n-1)-2560*a(n-2)+40960*a(n-3)-327680*a(n-4)+1048576*a(n-5) for n>4. %F A268152 G.f.: 8*x*(1+1024*x+67840*x^2+417792*x^3) / (1-16*x)^5. %F A268152 (End) %o A268152 (PARI) a(n) = sum(k=-n,n,sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k^2 - l^2)^4)); %o A268152 (PARI) concat(0, Vec(8*x*(1+1024*x+67840*x^2+417792*x^3)/(1-16*x)^5 + O(x^20))) \\ _Colin Barker_, Feb 11 2016 %Y A268152 Cf. A000984, A002894, A166337, A254408, A268148, A268150. %K A268152 easy,nonn %O A268152 0,2 %A A268152 _Richard P. Brent_, Jan 27 2016