cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268156 Smallest squarefree term of adjacent squarefree pairs in the sequence of practical numbers (A005153).

This page as a plain text file.
%I A268156 #12 Oct 21 2019 11:23:54
%S A268156 1,3486,41106,50358,77142,102090,104610,118734,119910,142662,155298,
%T A268156 159654,173910,192210,193290,203010,205062,212898,220818,228018,
%U A268156 232518,238170,239946,241878,254478,265278,266178,272118,273378,303630,306210,311178,323778,326370,331890,335478,335946,336102
%N A268156 Smallest squarefree term of adjacent squarefree pairs in the sequence of practical numbers (A005153).
%C A268156 The first occurrence of adjacent squarefree practical number pairs is 1, 2.
%C A268156 The first occurrence of adjacent squarefree practical number triples is 792834, 792858, 792870.
%H A268156 Amiram Eldar, <a href="/A268156/b268156.txt">Table of n, a(n) for n = 1..10000</a>
%H A268156 Wikipedia, <a href="http://en.wikipedia.org/wiki/Practical_number">Practical number</a>
%H A268156 Wikipedia, <a href="http://en.wikipedia.org/wiki/Squarefree_integer">Squarefree integer</a>
%e A268156 a(2) = 3486 = 2*3*7*83 and is squarefree. The next practical number is 3498 = 2*3*11*53 and is also squarefree. This is the second such pairing.
%t A268156 PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; lst=Select[Range[1000000], PracticalQ]; lst1={}; Do[If[SquareFreeQ[lst[[n]]]&&SquareFreeQ[lst[[n+1]]], AppendTo[lst1, lst[[n]]]], {n, 1, Length[lst]-1}]; lst1
%Y A268156 Cf. A005117, A005153, A265501.
%K A268156 nonn
%O A268156 1,2
%A A268156 _Frank M Jackson_, Jan 27 2016