cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268159 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with every element equal to at least one vertical or antidiagonal neighbor and the top left element equal to 0.

This page as a plain text file.
%I A268159 #6 Aug 12 2016 06:55:35
%S A268159 0,0,0,0,1,0,0,1,0,0,0,3,8,6,0,0,7,14,36,0,0,0,17,52,906,456,120,0,0,
%T A268159 42,1516,31818,23592,6360,0,0,0,104,7582,770406,10213152,3304920,
%U A268159 93600,5040,0,0,259,46338,28194516,871718016,4067565720,334738800,1784160,0,0,0,648
%N A268159 T(n,k)=Number of nXk arrays containing k copies of 0..n-1 with every element equal to at least one vertical or antidiagonal neighbor and the top left element equal to 0.
%C A268159 Table starts
%C A268159 .0....0.......0.........0..........0.............0............0.........0
%C A268159 .0....1.......1.........3..........7............17...........42.......104
%C A268159 .0....0.......8........14.........52..........1516.........7582.....46338
%C A268159 .0....6......36.......906......31818........770406.....28194516.857204082
%C A268159 .0....0.....456.....23592...10213152.....871718016.131259920304
%C A268159 .0..120....6360...3304920.4067565720.2310125813160
%C A268159 .0....0...93600.334738800
%C A268159 .0.5040.1784160
%C A268159 .0....0
%C A268159 .0
%H A268159 R. H. Hardin, <a href="/A268159/b268159.txt">Table of n, a(n) for n = 1..61</a>
%e A268159 Some solutions for n=4 k=4
%e A268159 ..0..3..3..1....0..3..2..3....0..3..1..2....0..2..1..2....0..0..1..1
%e A268159 ..0..3..2..1....0..3..2..3....0..3..1..2....0..2..1..2....0..1..2..1
%e A268159 ..3..2..0..1....1..1..0..2....3..0..2..1....1..3..0..3....0..2..3..3
%e A268159 ..2..2..0..1....1..1..0..2....3..0..2..1....1..3..0..3....2..2..3..3
%Y A268159 Column 2 is A005212(n-1).
%Y A268159 Row 2 is A003440(n-2).
%K A268159 nonn,tabl
%O A268159 1,12
%A A268159 _R. H. Hardin_, Jan 27 2016