This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268172 #35 Sep 11 2017 16:38:51 %S A268172 0,1,1,2,4,9,23,58,156,426,1194,3393,9802,28601,84347,250732,750908, %T A268172 2262817,6857386,20882889,63877262,196162762,604567254,1869318719, %U A268172 5797113028,18026873112,56197262814,175594836698,549839459963,1725126992844,5422602630117,17074281639963,53848886560675,170085320026578 %N A268172 Binary-ternary Wedderburn-Etherington numbers. %C A268172 This is the number of non-planar binary-ternary rooted trees (every node has out-degree 0 or 2 or 3) with n leaf nodes, indexed by the number of leaf nodes (NOT the total number of nodes). %C A268172 It can also be interpreted as the number of bracketings (valid placements of operation symbols) in a monomial of degree n in a nonassociative algebra with an (anti-)commutative binary operation and a completely (skew-)symmetric ternary operation. %H A268172 Alois P. Heinz, <a href="/A268172/b268172.txt">Table of n, a(n) for n = 0..1000</a> %H A268172 Murray R. Bremner, <a href="/A268172/a268172.txt">Maple code for binary-ternary Wedderburn-Etherington numbers</a> %H A268172 Murray R. Bremner, <a href="/A268172/a268172.pdf">Recursion formula for binary-ternary Wedderburn-Etherington numbers</a> %F A268172 See Maple code, and the recursion formula under Links. %e A268172 Here are the 1, 1, 2, 4, 9, 23 bracketings for degrees 1 to 6 (using the monomial interpretation), where the binary and ternary operations are written [-,-] and [-,-,-] respectively, and the hyphen is a placeholder for the argument symbols: %e A268172 Degree 1: -. %e A268172 Degree 2: [-,-]. %e A268172 Degree 3: [[-,-],-], [-,-,-]. %e A268172 Degree 4: [[[-,-],-],-], [[-,-],[-,-]], [[-,-,-],-], [[-,-],-,-]. %e A268172 Degree 5: %e A268172 [[[[-,-],-],-],-], %e A268172 [[[-,-,-],-],-], %e A268172 [[[-,-],[-,-]],-], %e A268172 [[[-,-],-,-],-], %e A268172 [[[-,-],-],[-,-]], %e A268172 [[-,-,-],[-,-]], %e A268172 [[[-,-],-],-,-], %e A268172 [[-,-,-],-,-], %e A268172 [[-,-],[-,-],-]. %e A268172 Degree 6: %e A268172 [[[[[-,-],-],-],-],-], %e A268172 [[[[-,-,-],-],-],-], %e A268172 [[[[-,-],[-,-]],-],-], %e A268172 [[[[-,-],-,-],-],-], %e A268172 [[[[-,-],-],[-,-]],-], %e A268172 [[[-,-,-],[-,-]],-], %e A268172 [[[[-,-],-],-,-],-], %e A268172 [[[-,-,-],-,-],-], %e A268172 [[[-,-], [-,-],-],-], %e A268172 [[[[-,-],-],-],[-,-]], %e A268172 [[[-,-,-],-],[-,-]], %e A268172 [[[-,-], [-,-]],[-,-]], %e A268172 [[[-,-],-,-],[-,-]], %e A268172 [[[-,-],-],[[-,-],-]], %e A268172 [[[-,-],-],[-,-,-]], %e A268172 [[-,-,-],[-,-,-]], %e A268172 [[[[-,-],-],-],-,-], %e A268172 [[[-,-,-],-],-,-], %e A268172 [[[-,-],[-,-]],-,-], %e A268172 [[[-,-],-,-],-,-], %e A268172 [[[-,-],-],[-,-],-], %e A268172 [[-,-,-],[-,-],-], %e A268172 [[-,-],[-,-],[-,-]]. %p A268172 # for first Maple program see Links %p A268172 # second Maple program: %p A268172 b:= proc(n, i, v) option remember; `if`(n=0, %p A268172 `if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0, %p A268172 `if`(v=n, 1, add(binomial(a(i)+j-1, j)* %p A268172 b(n-i*j, i-1, v-j), j=0..min(n/i, v))))) %p A268172 end: %p A268172 a:= proc(n) option remember; `if`(n<2, n, %p A268172 add(b(n, n+1-j, j), j=2..3)) %p A268172 end: %p A268172 seq(a(n), n=0..40); # _Alois P. Heinz_, Jan 28 2016 %t A268172 b[n_, i_, v_] := b[n, i, v] = If[n==0, If[v==0, 1, 0], If[i<1 || v<1 || n<v, 0, If[v==n, 1, Sum[Binomial[a[i]+j-1, j]*b[n-i*j, i-1, v-j], {j, 0, Min[n/i, v]}]]]]; a[n_] := a[n] = If[n<2, n, Sum[b[n, n+1-j, j], {j, 2, 3}]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 25 2017, after _Alois P. Heinz_ *) %Y A268172 Cf. A001190 (Binary Wedderburn-Etherington numbers). %Y A268172 Cf. A000598 (Ternary Wedderburn-Etherington numbers: number of non-planar ternary rooted trees with n nodes): note that this sequence is indexed by the total number of nodes, NOT the number of leaves. %Y A268172 Cf. A000669, A268163. %Y A268172 Column k=3 of A292085. %K A268172 easy,nonn %O A268172 0,4 %A A268172 _Murray R. Bremner_, Jan 27 2016