A268197 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w*(25*w + 24*x + 48*y + 96*z) a square, where w is a positive integer and x,y,z are nonnegative integers.
1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 3, 1, 1, 4, 5, 2, 2, 3, 4, 1, 2, 2, 4, 8, 3, 4, 4, 1, 2, 5, 1, 5, 4, 2, 7, 3, 2, 6, 7, 1, 4, 7, 7, 3, 3, 8, 5, 4, 5, 6, 6, 1, 3, 8, 3, 6, 3, 2, 8, 5, 1, 5, 6, 5, 7, 6, 6
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*0 + 96*0) = 5^2. a(2) = 2 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*0 + 96*1) = 11^2, and also 2 = 1^2 + 1^2 + 0^2 + 0^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*0 + 96*0) = 7^2. a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*1 + 96*1) = 13^2. a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*1 + 96*2) = 17^2. a(15) = 1 since 15 = 1^2 + 3^2 + 2^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*3 + 48*2 + 96*1) = 17^2. a(23) = 1 since 23 = 3^2 + 2^2 + 3^2 + 1^2 with 3 > 0 and 3*(25*3 + 24*2 + 48*3 + 96*1) = 33^2. a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*2 + 96*5) = 25^2. a(34) = 1 since 34 = 1^2 + 1^2 + 4^2 + 4^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*4 + 96*4) = 25^2. a(43) = 1 since 43 = 3^2 + 3^2 + 3^2 + 4^2 with 3 > 0 and 3*(25*3 + 24*3 + 48*3 + 96*4) = 45^2. a(55) = 1 since 55 = 3^2 + 1^2 + 6^2 + 3^2 with 3 > 0 and 3*(25*3 + 24*1 + 48*6 + 96*3) = 45^2. a(463) = 1 since 463 = 3^2 + 18^2 + 11^2 + 3^2 with 3 > 0 and 3*(25*3 + 24*18 + 48*11 + 96*3) = 63^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
- Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[25x^2+24x(y+2z+4*Sqrt[n-x^2-y^2-z^2])],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,1,70}]
Comments