A268255 Number of length-(n+1) 0..2 arrays with new repeated values introduced in sequential order starting with zero.
7, 17, 42, 106, 273, 717, 1918, 5218, 14413, 40349, 114282, 326938, 943257, 2740797, 8010982, 23529346, 69385813, 205282157, 608959218, 1810358938, 5391414273, 16078923309, 48007516942, 143470822498, 429083952157, 1284051486077
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0....1....1....0....0....1....0....0....2....1....0....1....2....0....0....1 ..0....0....0....0....0....0....0....2....0....2....1....2....1....1....0....0 ..2....0....0....2....0....1....1....0....0....0....2....1....2....0....1....2 ..0....1....0....0....2....0....0....0....0....0....1....2....1....0....0....0 ..1....1....1....1....0....2....0....0....1....2....2....0....0....2....0....2 ..0....1....2....1....2....0....1....1....1....1....1....0....1....1....1....1 ..1....1....1....0....0....0....0....0....1....0....2....1....0....0....1....0 ..0....1....2....1....2....2....2....0....2....1....0....0....0....1....1....0 ..2....1....0....0....1....1....1....1....2....0....0....2....1....1....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A268261.
Formula
Empirical: a(n) = 7*a(n-1) - 15*a(n-2) + 7*a(n-3) + 6*a(n-4).
Conjectures from Colin Barker, Jan 11 2019: (Start)
G.f.: x*(7 - 32*x + 28*x^2 + 18*x^3) / ((1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)).
a(n) = 2^n + 3^n/2 + (3/4-1/sqrt(2))*(1-sqrt(2))^n + (3/4+1/sqrt(2))*(1+sqrt(2))^n.
(End)