A268256 Number of length-(n+1) 0..3 arrays with new repeated values introduced in sequential order starting with zero.
13, 43, 143, 479, 1616, 5492, 18804, 64869, 225483, 789747, 2787100, 9910252, 35501416, 128109313, 465606659, 1704022367, 6278399432, 23282368196, 86873186508, 326055377709, 1230562324251, 4668500002491, 17797745988388
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0....0....1....1....0....2....0....1....2....2....0....0....2....2....3....0 ..1....2....2....3....1....3....0....0....0....3....1....3....1....1....0....0 ..3....0....3....0....2....0....0....3....0....1....3....1....0....3....1....0 ..2....2....1....1....3....0....3....0....0....0....2....0....0....2....0....1 ..3....1....0....0....2....1....2....0....1....3....3....3....0....0....3....0 ..2....2....1....0....1....2....1....3....3....1....0....2....1....0....2....0 ..1....3....2....1....3....1....3....1....0....0....0....0....3....2....1....0 ..2....0....1....1....1....0....2....0....3....0....3....0....1....3....0....1 ..0....3....2....3....3....1....0....3....2....3....2....1....2....1....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A268261.
Formula
Empirical: a(n) = 13*a(n-1) - 60*a(n-2) + 105*a(n-3) - 11*a(n-4) - 94*a(n-5) - 24*a(n-6).
Empirical g.f.: x*(13 - 126*x + 364*x^2 - 165*x^3 - 403*x^4 - 96*x^5) / ((1 - 3*x)*(1 - 4*x)*(1 - 3*x - x^2)*(1 - 3*x - 2*x^2)). - Colin Barker, Jan 11 2019