cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268261 T(n,k)=Number of length-(n+1) 0..k arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

3, 7, 5, 13, 17, 9, 21, 43, 42, 17, 31, 89, 143, 106, 33, 43, 161, 378, 479, 273, 65, 57, 265, 837, 1610, 1616, 717, 129, 73, 407, 1634, 4357, 6877, 5492, 1918, 257, 91, 593, 2907, 10082, 22710, 29461, 18804, 5218, 513, 111, 829, 4818, 20771, 62249, 118530, 126591
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Comments

Table starts
....3.....7.....13.......21.......31........43.........57..........73
....5....17.....43.......89......161.......265........407.........593
....9....42....143......378......837......1634.......2907........4818
...17...106....479.....1610.....4357.....10082......20771.......39154
...33...273...1616.....6877....22710.....62249.....148468......318261
...65...717...5492....29461...118530....384605....1061632.....2587557
..129..1918..18804...126591...619490...2377935....7594224....21042479
..257..5218..64869...545627..3242265..14712729...54345509...171161319
..513.14413.225483..2359152.16993552..91096234..389060724..1392571084
.1025.40349.789747.10233188.89197862.564452368.2786424182.11332701236

Examples

			Some solutions for n=5 k=4
..0....4....1....2....0....3....2....1....0....1....4....1....1....1....3....2
..0....3....4....4....0....2....4....0....3....4....0....3....0....2....4....0
..4....4....0....0....4....3....3....0....2....1....4....4....4....3....0....0
..3....0....2....0....0....4....4....4....0....4....1....0....3....2....3....4
..1....0....3....1....2....0....1....3....3....0....0....3....1....3....0....3
..3....3....2....4....0....0....4....0....2....3....3....1....3....0....4....0
		

Crossrefs

Column 1 is A000051.
Row 1 is A002061(n+1).
Row 2 is A100705.

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2)
k=2: a(n) = 7*a(n-1) -15*a(n-2) +7*a(n-3) +6*a(n-4)
k=3: a(n) = 13*a(n-1) -60*a(n-2) +105*a(n-3) -11*a(n-4) -94*a(n-5) -24*a(n-6)
k=4: [order 8]
k=5: [order 10]
k=6: [order 12]
k=7: [order 14]
Empirical for row n:
n=1: a(n) = n^2 + n + 1
n=2: a(n) = n^3 + n^2 + 2*n + 1
n=3: a(n) = n^4 + n^3 + 3*n^2 + 2*n + 2
n=4: a(n) = n^5 + n^4 + 4*n^3 + 3*n^2 + 6*n + 2
n=5: a(n) = n^6 + n^5 + 5*n^4 + 4*n^3 + 12*n^2 + 6*n + 5 for n>1
n=6: a(n) = n^7 + n^6 + 6*n^5 + 5*n^4 + 20*n^3 + 12*n^2 + 20*n + 5 for n>1
n=7: a(n) = n^8 + n^7 + 7*n^6 + 6*n^5 + 30*n^4 + 20*n^3 + 50*n^2 + 20*n + 15 for n>2