A268261 T(n,k)=Number of length-(n+1) 0..k arrays with new repeated values introduced in sequential order starting with zero.
3, 7, 5, 13, 17, 9, 21, 43, 42, 17, 31, 89, 143, 106, 33, 43, 161, 378, 479, 273, 65, 57, 265, 837, 1610, 1616, 717, 129, 73, 407, 1634, 4357, 6877, 5492, 1918, 257, 91, 593, 2907, 10082, 22710, 29461, 18804, 5218, 513, 111, 829, 4818, 20771, 62249, 118530, 126591
Offset: 1
Examples
Some solutions for n=5 k=4 ..0....4....1....2....0....3....2....1....0....1....4....1....1....1....3....2 ..0....3....4....4....0....2....4....0....3....4....0....3....0....2....4....0 ..4....4....0....0....4....3....3....0....2....1....4....4....4....3....0....0 ..3....0....2....0....0....4....4....4....0....4....1....0....3....2....3....4 ..1....0....3....1....2....0....1....3....3....0....0....3....1....3....0....3 ..3....3....2....4....0....0....4....0....2....3....3....1....3....0....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2)
k=2: a(n) = 7*a(n-1) -15*a(n-2) +7*a(n-3) +6*a(n-4)
k=3: a(n) = 13*a(n-1) -60*a(n-2) +105*a(n-3) -11*a(n-4) -94*a(n-5) -24*a(n-6)
k=4: [order 8]
k=5: [order 10]
k=6: [order 12]
k=7: [order 14]
Empirical for row n:
n=1: a(n) = n^2 + n + 1
n=2: a(n) = n^3 + n^2 + 2*n + 1
n=3: a(n) = n^4 + n^3 + 3*n^2 + 2*n + 2
n=4: a(n) = n^5 + n^4 + 4*n^3 + 3*n^2 + 6*n + 2
n=5: a(n) = n^6 + n^5 + 5*n^4 + 4*n^3 + 12*n^2 + 6*n + 5 for n>1
n=6: a(n) = n^7 + n^6 + 6*n^5 + 5*n^4 + 20*n^3 + 12*n^2 + 20*n + 5 for n>1
n=7: a(n) = n^8 + n^7 + 7*n^6 + 6*n^5 + 30*n^4 + 20*n^3 + 50*n^2 + 20*n + 15 for n>2
Comments