A268264 Number of length-(5+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.
33, 273, 1616, 6877, 22710, 62249, 148468, 318261, 627242, 1155265, 2012664, 3347213, 5351806, 8272857, 12419420, 18173029, 25998258, 36454001, 50205472, 68036925, 90865094, 119753353, 155926596, 200786837, 255929530, 323160609
Offset: 1
Keywords
Examples
Some solutions for n=7: ..6....0....4....7....2....6....4....6....5....0....7....0....5....7....1....3 ..3....6....1....2....4....0....6....1....0....2....0....0....2....3....2....2 ..2....7....7....3....6....3....7....0....0....7....7....2....4....6....3....5 ..6....0....0....6....3....0....2....4....6....5....6....1....3....3....5....7 ..0....0....5....2....2....4....5....5....1....4....4....0....4....7....3....6 ..3....4....6....0....0....1....7....1....3....5....0....4....2....2....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A268261.
Formula
Empirical: a(n) = n^6 + n^5 + 5*n^4 + 4*n^3 + 12*n^2 + 6*n + 5 for n>1.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(33 + 42*x + 398*x^2 + 143*x^3 + 107*x^4 - 2*x^5 - 2*x^6 + x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)