cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268264 Number of length-(5+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.

Original entry on oeis.org

33, 273, 1616, 6877, 22710, 62249, 148468, 318261, 627242, 1155265, 2012664, 3347213, 5351806, 8272857, 12419420, 18173029, 25998258, 36454001, 50205472, 68036925, 90865094, 119753353, 155926596, 200786837, 255929530, 323160609
Offset: 1

Views

Author

R. H. Hardin, Jan 29 2016

Keywords

Examples

			Some solutions for n=7:
..6....0....4....7....2....6....4....6....5....0....7....0....5....7....1....3
..3....6....1....2....4....0....6....1....0....2....0....0....2....3....2....2
..2....7....7....3....6....3....7....0....0....7....7....2....4....6....3....5
..6....0....0....6....3....0....2....4....6....5....6....1....3....3....5....7
..0....0....5....2....2....4....5....5....1....4....4....0....4....7....3....6
..3....4....6....0....0....1....7....1....3....5....0....4....2....2....2....3
		

Crossrefs

Row 5 of A268261.

Formula

Empirical: a(n) = n^6 + n^5 + 5*n^4 + 4*n^3 + 12*n^2 + 6*n + 5 for n>1.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(33 + 42*x + 398*x^2 + 143*x^3 + 107*x^4 - 2*x^5 - 2*x^6 + x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)