A268265 Number of length-(6+1) 0..n arrays with new repeated values introduced in sequential order starting with zero.
65, 717, 5492, 29461, 118530, 384605, 1061632, 2587557, 5717246, 11671405, 22326540, 40450997, 69992122, 116419581, 187129880, 291917125, 443515062, 658215437, 956567716, 1364165205, 1912522610, 2640050077, 3593128752
Offset: 1
Keywords
Examples
Some solutions for n=5: ..3....2....1....5....2....4....2....5....1....5....2....2....1....4....0....5 ..4....3....3....4....3....2....3....0....3....0....4....3....0....3....0....3 ..0....5....5....5....1....3....0....0....1....0....3....4....1....1....4....2 ..2....1....4....0....3....0....0....0....4....5....5....0....4....0....1....4 ..0....3....1....4....0....3....5....0....1....3....0....2....0....1....1....5 ..0....4....0....0....3....2....0....0....0....0....5....1....0....2....2....0 ..2....1....0....5....1....0....1....5....0....2....4....3....0....5....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 6 of A268261.
Formula
Empirical: a(n) = n^7 + n^6 + 6*n^5 + 5*n^4 + 20*n^3 + 12*n^2 + 20*n + 5 for n>1.
Conjectures from Colin Barker, Jan 13 2019: (Start)
G.f.: x*(65 + 197*x + 1576*x^2 + 1961*x^3 + 1016*x^4 + 271*x^5 - 76*x^6 + 35*x^7 - 5*x^8) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>9.
(End)