A268281 Numbers n such that n-tau(n), phi(n) and n form a Heronian triangle, where tau=A000005 is the number of divisors and phi=A000010 the totient.
5, 34, 53, 90, 120, 440, 780, 1954, 120994, 140453, 28813276834
Offset: 1
Examples
a(2) = 34 because the triangle so formed has sides 30, 16, 34. It is Heronian with integer area 240 and is also Pythagorean. It is the second Heronian triangle. The triangle corresponding to a(11) has sides n = 28813276834, n-tau(n) = 28813276830, phi(n) = 14406638416, and area 200960614753814018640.
Links
- Eric Weisstein's World of Mathematics, Divisor Function
- Eric Weisstein's World of Mathematics, Totient Function
- Eric Weisstein's World of Mathematics, Heronian Triangle.
Programs
-
Mathematica
triples[n_] := ({a, b, c}={n-DivisorSigma[0, n], EulerPhi[n], n}; s=(a+b+c)/2; If[a+b>c&&IntegerQ[Sqrt[s(s-a)(s-b)(s-c)]], {a, b, c}, {}]); lst={}; Do[If[triples[n]!={}, AppendTo[lst, Last[triples[n]]]], {n, 1, 200000}]; lst
Extensions
a(11) from Giovanni Resta, Apr 14 2016
Comments