A268307 Integers n such that A005897(n) is the sum of two positive cubes.
5, 11, 17, 28, 37, 81, 87, 107, 141, 178, 200, 205, 229, 296, 301, 377, 385, 395, 427, 497, 511, 595, 613, 641, 660, 907, 914, 921, 955, 975, 983, 991, 1043, 1129, 1265, 1343, 1369, 1382, 1409, 1537, 1552, 1601, 1819, 1838, 1839, 1917, 1922, 1979, 2205, 2299, 2381, 2581, 2649, 2663
Offset: 1
Examples
5 is a term because A005897(5) = 152 = 3^3 + 5^3. 11 is a term because A005897(11) = 728 = 6^3 + 8^3. 17 is a term because A005897(17) = 1736 = 2^3 + 12^3.
Programs
-
Mathematica
Select[Range@ 2700, Length[PowersRepresentations[6 #^2 + 2, 2, 3] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Feb 01 2016 *)
-
PARI
T = thueinit('z^3+1); is(n) = #select(v->min(v[1], v[2])>0, thue(T, n))>0; a(n) = if(n, 6*n^2+2, 1); for(n=0, 1e4, if(is(a(n)), print1(n, ", ")));
Comments