A268311 Number of free polyominoes that form a continuous path of edge joined cells spanning an n X n square in both dimensions.
1, 2, 24, 1051, 238048, 195284973, 577169894573, 6200686124225191
Offset: 1
Examples
The cells with value 1 show the smallest possible lake in this 4 X 4 square: 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 a(3)=24 = 6+7+7+3+1: There fit 6 5-ominoes in a 3x3 square, 7 6-ominoes in a 3x3 square, 7 7-ominoes in a 3x3 square, 3 8-ominoes in a 3x3 square, a 1 9-omino in a 3x3 square. - _R. J. Mathar_, Jun 07 2020
Links
- Craig Knecht, Polyominoes enumeration
- Craig Knecht, Connective polyominoes 3x3
- R. J. Mathar, Corrigendum to "Polyomino Enumeration Results (Parkin et al, SIAM Fall Meeting 1967)" viXra:1905.0474 (2019)
- R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy) page 9 (incorrect at n=15).
- Wikipedia, Connective Polyominoes 4x4
- Wikipedia, Connective Polyominoes 5x5
- Wikipedia, Connective polyominoes with 4 sym-axis
- Wikipedia, Pond larger than a lake
- Wikipedia, Water Retention on Mathematical Surfaces
- Index entries for sequences related to polyominoes
Extensions
a(6) corrected. Craig Knecht, May 25 2020
Comments