This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268312 #21 Jan 19 2025 11:45:54 %S A268312 1031223314,21322314,21322314,21322314,21322314,3122331415,3122331416, %T A268312 3122331417,3122331418,3122331419,1031223314,21322314,21322314, %U A268312 21322314,21322314,3122331415,3122331416,3122331417,3122331418,3122331419,10311233,21322314,22,21322314,31123314,31123315 %N A268312 First number of the periodic part of the "Say what you see" trajectory (see A005151) of n. %C A268312 a(40) is the first time the periodic part of the trajectory contains more than one term. %H A268312 Julien Kluge, <a href="/A268312/b268312.txt">Table of n, a(n) for n = 0..10000</a> %e A268312 Consider the starting value n = 5. We see one five: 15. We have one one and one five: 1115. We have three ones and one five: 3115... We reach 3122331415 which produces itself. So a(5) = 3122331415. %t A268312 a005151[n_, m_] := %t A268312 FromDigits[ %t A268312 Reverse /@ %t A268312 Sort[Tally[ %t A268312 If[n == 2, m, a005151[n - 1, m]] // %t A268312 IntegerDigits], #1[[1]] < #2[[1]] &] // Flatten]; %t A268312 a[n_] := Block[{previousNum = 0, currentNum = 1, knownNums = {n}}, %t A268312 For[i = 2, currentNum != previousNum, ++i, %t A268312 previousNum = currentNum; %t A268312 currentNum = a005151[i, n]; %t A268312 If[MemberQ[knownNums, currentNum], Return[currentNum], %t A268312 AppendTo[knownNums, currentNum]]; %t A268312 ]; %t A268312 Return[currentNum]; %t A268312 ] %t A268312 a /@ Range[0, 100] %Y A268312 A005151 shows a(1) at term number 13. %Y A268312 Cf. A047841. %K A268312 nonn,easy,base %O A268312 0,1 %A A268312 _Julien Kluge_, Jan 31 2016