cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268316 a(n) is the number of Dyck paths of length 4n and height n.

This page as a plain text file.
%I A268316 #44 Sep 08 2022 08:46:15
%S A268316 1,1,7,57,484,4199,36938,328185,2937932,26457508,239414383,2175127695,
%T A268316 19827974412,181266501290,1661241473220,15257624681145,
%U A268316 140400178555644,1294141164447692,11946771748196428,110435320379615620,1022108852175416720,9470416604629933935
%N A268316 a(n) is the number of Dyck paths of length 4n and height n.
%C A268316 Equivalently, a(n) is the number of rooted plane trees with 2n+1 nodes and height n.
%H A268316 Gheorghe Coserea, <a href="/A268316/b268316.txt">Table of n, a(n) for n = 0..1000</a>.
%H A268316 Gheorghe Coserea, <a href="/A268316/a268316_2.txt">Solutions for n=3</a>.
%H A268316 Gheorghe Coserea, <a href="/A268316/a268316_3.txt">Solutions for n=4</a>.
%H A268316 Gheorghe Coserea, <a href="/A268316/a268316.mzn.txt">MiniZinc model for generating solutions</a>.
%F A268316 a(n) = T(2n,n), where T(n,k) is defined by A080936.
%F A268316 a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)).
%F A268316 a(n) ~ K * A268315^n / sqrt(n), where K = 8/27 * sqrt(2/(3*Pi)) = 0.13649151584...
%F A268316 G.f.: -((3F2(-3/4, -1/2, -1/4; 1/3, 2/3; 256*x/27)-1)/(4*x)) + 4/5*x*3F2(5/4, 3/2, 7/4; 7/3, 8/3; 256*x/27) + 8/3*x^2*3F2(9/4, 5/2, 11/4; 10/3, 11/3; 256*x/27). - _Benedict W. J. Irwin_, Aug 09 2016
%F A268316 Recurrence: 3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(2*n^2 - 4*n + 3)*a(n) = 8*(2*n - 1)*(2*n + 3)*(4*n - 3)*(4*n - 1)*(2*n^2 + 1)*a(n-1). - _Vaclav Kotesovec_, Aug 10 2016
%e A268316 For n = 2 the a(2) = 7 solutions are
%e A268316               /\/\/\       |
%e A268316 LLRLRLRR     /      \     /|\
%e A268316 ................................
%e A268316                 /\        /|\
%e A268316 LRLLRRLR     /\/  \/\      |
%e A268316 ................................
%e A268316               /\  /\       /\
%e A268316 LLRRLLRR     /  \/  \     /  \
%e A268316 ................................
%e A268316               /\           /|\
%e A268316 LLRRLRLR     /  \/\/\     /
%e A268316 ................................
%e A268316                   /\      /|\
%e A268316 LRLRLLRR     /\/\/  \        \
%e A268316 ................................
%e A268316               /\/\         /\
%e A268316 LLRLRRLR     /    \/\     /\
%e A268316 ................................
%e A268316                 /\/\       /\
%e A268316 LRLLRLRR     /\/    \       /\
%t A268316 Table[Binomial[4 n, n] 2 (2 n + 3) (2 n^2 + 1) / ((3 n + 1) (3 n + 2) (3 n + 3)), {n, 1, 25}] (* _Vincenzo Librandi_, Feb 04 2016 *)
%t A268316 Drop[CoefficientList[Series[-((-1 + HypergeometricPFQ[{-3/4, -1/2, -1/4}, {1/3, 2/3}, 256 x/27])/(4x)) + 4/5 x HypergeometricPFQ[{5/4, 3/2, 7/4}, {7/3, 8/3}, 256 x/27] + 8/3 x^2 HypergeometricPFQ[{9/4, 5/2, 11/4}, {10/3, 11/3}, 256x/27], {x, 0, 20}], x], 1] (* _Benedict W. J. Irwin_, Aug 09 2016 *)
%o A268316 (PARI)
%o A268316 a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3));
%o A268316 vector(21, i, a(i))
%o A268316 (Magma) [Binomial(4*n, n)*2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)): n in [1..30]]; // _Vincenzo Librandi_, Feb 04 2016
%Y A268316 Cf. A080936, A268315.
%Y A268316 Column k=2 of A289481.
%K A268316 nonn,walk
%O A268316 0,3
%A A268316 _Gheorghe Coserea_, Feb 01 2016
%E A268316 Added a(0)=1, adjusted b-file - _N. J. A. Sloane_, Dec 22 2016