This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268317 #11 Mar 03 2016 15:57:19 %S A268317 0,1,2,2,2,2,3,2,2,3,2,3,2,2,3,2,3,3,2,3,2,2,3,2,3,3,2,3,2,3,3,2,3,2, %T A268317 2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3,2,2,3,2,3,3,2,3,2,3,3,2,3,3, %U A268317 2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3,2,2,3,2,3,3,2,3,2,3,3,2,3 %N A268317 Irregular triangle read by rows: T(n,k) gives the columns sum in the table Fib(n+1) X Fib(n), where k = 1..Fib(n), and 1's are assigned to cells on the longest diagonal path. %C A268317 Inspired by sun flower spirals which come in Fib(i) and Fib(i+1) numbers in opposite directions. The present case of the Fib(n+1) X Fib(n) table has the following properties: %C A268317 (i) Columns sum create the present irregular triangle. %C A268317 (ii) Rows sum create the irregular triangle A268318. %C A268317 (iii) The row sum of each of these irregular triangles is conjectured to be A000071. %C A268317 (iv) The first differences of the sequence of half of the voids (0's) are conjectured to give A191797. %C A268317 See illustrations in the links. %H A268317 Kival Ngaokrajang, <a href="/A268317/a268317.pdf">Illustration of initial terms</a>, <a href="/A268317/a268317_1.pdf">Sun flower spirals</a> %e A268317 Irregular triangle begins: %e A268317 1 %e A268317 2 %e A268317 2 2 %e A268317 2 3 2 %e A268317 2 3 2 3 2 %e A268317 2 3 2 3 3 2 3 2 %e A268317 2 3 2 3 3 2 3 2 3 3 2 3 2 %e A268317 ... %o A268317 (Small Basic) %o A268317 TextWindow.Write("0, 1, 2, 2, 2, 2, 3, 2, ") %o A268317 t[4][1] = 2 %o A268317 t[4][2] = 3 %o A268317 t[4][3] = 2 %o A268317 k[3] = 2 %o A268317 k[4] = 3 %o A268317 For n = 5 To 12 %o A268317 k[n] = k[n-1]+k[n-2] %o A268317 c = math.Ceiling(k[n]/2) %o A268317 i1 = 1 %o A268317 For j = 1 To k[n] %o A268317 If Math.Remainder(k[n],2)<>0 Then %o A268317 If j > c then %o A268317 t[n][j] = t[n][j-2*i1] %o A268317 i1 = i1 + 1 %o A268317 Else %o A268317 t[n][j] = t[n-1][j] %o A268317 EndIf %o A268317 Else %o A268317 If j <= c then %o A268317 t[n][j] = t[n-1][j] %o A268317 Else %o A268317 if j = c+1 Then %o A268317 t[n][j] = t[n][j-1] %o A268317 else %o A268317 t[n][j] = t[n][j-(2*i1+1)] %o A268317 i1 = i 1+ 1 %o A268317 endif %o A268317 EndIf %o A268317 EndIf %o A268317 TextWindow.Write(t[n][j]+", ") %o A268317 EndFor %o A268317 EndFor %Y A268317 Cf. A000071, A191797, A268318. %K A268317 nonn,base,tabf %O A268317 0,3 %A A268317 _Kival Ngaokrajang_, Feb 01 2016