This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268318 #9 Mar 03 2016 16:10:06 %S A268318 0,1,1,1,1,2,1,1,2,1,2,1,1,2,1,2,2,1,2,1,1,2,1,2,2,1,2,1,2,2,1,2,1,1, %T A268318 2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,1,2,1,2,2,1,2,1,2,2,1,2,2,1, %U A268318 2,1,2,2,1,2,1,2,2,1,2,2,1,2,1,2,2,1,2,1,1,2,1,2,2,1,2,1,2,2,1,2,2 %N A268318 Irregular triangle read by rows: T(n,k) gives the row sums in the table Fib(n+1) X Fib(n), where k = 1..Fib(n+1), and 1's are assigned to cells on the longest diagonal path. %C A268318 Inspired by sun flower spirals which come in Fib(i) and Fib(i+1) numbers in opposite directions. The present Fib(n+1) X Fib(n) table has the following properties: %C A268318 (i) Columns sum create the irregular triangle A268317. %C A268318 (ii) Rows sum create the present irregular triangle. %C A268318 (iii) The row sums of each of these irregular triangles is conjectured to be A000071. %C A268318 (iv) The first differences of the sequence of half of the voids (0's) are conjectured to give A191797. %C A268318 See illustrations in the links of A268317. %e A268318 Irregular triangle begins: %e A268318 0 %e A268318 1 %e A268318 1 1 %e A268318 1 2 1 %e A268318 1 2 1 2 1 %e A268318 1 2 1 2 2 1 2 1 %e A268318 1 2 1 2 2 1 2 1 2 2 1 2 1 %e A268318 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1 %e A268318 ... %o A268318 (Small Basic) %o A268318 TextWindow.Write("0, 1, 1, 1, 1, 2, 1, ") %o A268318 t[3][1] = 1 %o A268318 t[3][2] = 2 %o A268318 t[3][3] = 1 %o A268318 k[2] = 2 %o A268318 k[3] = 3 %o A268318 For n = 4 To 12 %o A268318 k[n] = k[n-1] + k[n-2] %o A268318 c = math.Ceiling(k[n]/2) %o A268318 i1 = 1 %o A268318 For j = 1 To k[n] %o A268318 If Math.Remainder(k[n],2)<>0 Then %o A268318 If j > c then %o A268318 t[n][j] = t[n][j-2*i1] %o A268318 i1 = i1 + 1 %o A268318 Else %o A268318 t[n][j] = t[n-1][j] %o A268318 EndIf %o A268318 Else %o A268318 If j <= c then %o A268318 t[n][j] = t[n-1][j] %o A268318 Else %o A268318 if j = c+1 Then %o A268318 t[n][j] = t[n][j-1] %o A268318 else %o A268318 t[n][j] = t[n][j-(2*i1+1)] %o A268318 i1 = i1 + 1 %o A268318 endif %o A268318 EndIf %o A268318 EndIf %o A268318 TextWindow.Write(t[n][j]+", ") %o A268318 EndFor %o A268318 EndFor %Y A268318 Cf. A000071, A191797, A268317. %K A268318 nonn,base,tabf %O A268318 0,6 %A A268318 _Kival Ngaokrajang_, Feb 01 2016