cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268323 Number of length-(n+1) 0..4 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

This page as a plain text file.
%I A268323 #4 Feb 01 2016 10:22:56
%S A268323 2,4,11,33,113,418,1644,6729,28306,121290,526528,2307684,10189912,
%T A268323 45272176,202209217,907511800,4091094290,18521091171,84191453893,
%U A268323 384234672892,1760416403153,8096423923987,37376700482989,173184754445281
%N A268323 Number of length-(n+1) 0..4 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.
%C A268323 Column 4 of A268327.
%H A268323 R. H. Hardin, <a href="/A268323/b268323.txt">Table of n, a(n) for n = 1..210</a>
%F A268323 Empirical: a(n) = 30*a(n-1) -383*a(n-2) +2665*a(n-3) -10530*a(n-4) +20413*a(n-5) +1810*a(n-6) -87142*a(n-7) +111699*a(n-8) +116304*a(n-9) -292159*a(n-10) -83751*a(n-11) +371556*a(n-12) +93673*a(n-13) -257980*a(n-14) -122812*a(n-15) +60076*a(n-16) +59180*a(n-17) +15912*a(n-18) +1440*a(n-19)
%e A268323 Some solutions for n=10
%e A268323 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e A268323 ..1....1....1....0....1....1....1....1....0....1....0....0....1....0....1....1
%e A268323 ..2....0....2....1....2....0....0....0....0....0....0....1....0....0....2....2
%e A268323 ..0....2....0....0....1....2....0....0....1....2....1....2....1....1....0....0
%e A268323 ..1....3....0....1....3....3....2....2....2....3....1....3....2....1....1....0
%e A268323 ..0....2....3....2....2....2....3....1....1....4....1....1....0....2....0....0
%e A268323 ..3....4....0....0....3....4....0....3....2....2....2....2....1....2....3....3
%e A268323 ..4....0....3....2....2....0....0....1....3....0....1....1....2....3....1....1
%e A268323 ..0....2....0....1....1....1....0....0....4....3....1....0....3....4....0....4
%e A268323 ..1....1....0....1....4....4....4....0....0....1....2....1....4....3....4....0
%e A268323 ..4....0....4....0....3....3....2....4....4....0....0....2....3....4....0....3
%Y A268323 Cf. A268327.
%K A268323 nonn
%O A268323 1,1
%A A268323 _R. H. Hardin_, Feb 01 2016