cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268324 Number of length-(n+1) 0..5 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

This page as a plain text file.
%I A268324 #4 Feb 01 2016 10:23:37
%S A268324 2,4,11,33,114,434,1806,8052,37851,184910,928406,4752055,24656385,
%T A268324 129183323,681695654,3616896810,19273025959,103063766844,552827229141,
%U A268324 2973435835535,16033214329525,86659280236610,469464972714177
%N A268324 Number of length-(n+1) 0..5 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.
%C A268324 Column 5 of A268327.
%H A268324 R. H. Hardin, <a href="/A268324/b268324.txt">Table of n, a(n) for n = 1..210</a>
%F A268324 Empirical: a(n) = 52*a(n-1) -1217*a(n-2) +16835*a(n-3) -151495*a(n-4) +913335*a(n-5) -3595675*a(n-6) +7981675*a(n-7) -1977562*a(n-8) -42002621*a(n-9) +99434620*a(n-10) +11892832*a(n-11) -369952047*a(n-12) +312076090*a(n-13) +749849987*a(n-14) -1016956079*a(n-15) -1168160519*a(n-16) +1710725071*a(n-17) +1710086539*a(n-18) -1618310265*a(n-19) -2126314760*a(n-20) +451613225*a(n-21) +1594319858*a(n-22) +601430554*a(n-23) -317807648*a(n-24) -383121792*a(n-25) -161486112*a(n-26) -36051552*a(n-27) -4243968*a(n-28) -207360*a(n-29)
%e A268324 Some solutions for n=10
%e A268324 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e A268324 ..0....0....0....0....1....0....0....0....0....0....0....1....0....0....0....0
%e A268324 ..1....0....0....1....0....1....1....1....0....1....1....2....1....1....1....1
%e A268324 ..1....1....0....2....1....2....2....2....1....1....2....0....2....1....2....2
%e A268324 ..2....1....1....1....0....1....0....1....2....2....1....0....0....1....3....1
%e A268324 ..3....1....2....1....0....2....3....0....0....2....3....3....1....1....4....3
%e A268324 ..2....2....3....2....2....3....2....1....2....2....4....1....0....0....3....2
%e A268324 ..3....3....0....1....0....4....1....1....1....2....3....2....1....1....0....4
%e A268324 ..0....2....1....3....1....1....2....3....3....3....5....4....1....2....4....3
%e A268324 ..2....4....3....2....2....3....4....4....1....3....0....5....0....2....1....0
%e A268324 ..3....1....2....0....1....1....0....5....3....3....2....2....0....3....4....3
%Y A268324 Cf. A268327.
%K A268324 nonn
%O A268324 1,1
%A A268324 _R. H. Hardin_, Feb 01 2016