cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268326 Number of length-(n+1) 0..7 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.

This page as a plain text file.
%I A268326 #4 Feb 01 2016 10:25:28
%S A268326 2,4,11,33,114,435,1829,8376,41466,220115,1242614,7395663,45999012,
%T A268326 296480813,1965371333,13314182333,91697130971,639451012407,
%U A268326 4501167824269,31908164747227,227399949031725,1627202389749190,11680282747792917
%N A268326 Number of length-(n+1) 0..7 arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero.
%C A268326 Column 7 of A268327.
%H A268326 R. H. Hardin, <a href="/A268326/b268326.txt">Table of n, a(n) for n = 1..210</a>
%H A268326 R. H. Hardin, <a href="/A268326/a268326.txt">Empirical recurrence of order 54</a>
%F A268326 Empirical recurrence of order 54 (see link above)
%e A268326 Some solutions for n=9
%e A268326 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
%e A268326 ..1....1....1....1....1....0....1....1....1....1....1....1....0....1....1....0
%e A268326 ..2....0....2....0....2....1....2....0....2....2....2....0....1....2....0....1
%e A268326 ..3....1....1....1....3....1....3....0....1....1....3....0....2....3....2....0
%e A268326 ..4....2....3....2....4....0....1....1....0....3....1....0....3....1....3....2
%e A268326 ..5....3....1....3....2....2....2....1....3....4....3....0....2....2....2....0
%e A268326 ..1....0....4....2....1....3....4....2....0....0....0....2....4....1....4....2
%e A268326 ..4....2....1....4....0....4....2....3....3....5....4....0....3....4....2....1
%e A268326 ..5....0....5....0....0....1....3....4....2....3....1....3....5....5....1....0
%e A268326 ..6....4....4....5....1....5....0....2....3....1....3....4....3....4....2....3
%Y A268326 Cf. A268327.
%K A268326 nonn
%O A268326 1,1
%A A268326 _R. H. Hardin_, Feb 01 2016