This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268327 #4 Feb 01 2016 10:26:15 %S A268327 2,2,3,2,4,6,2,4,10,11,2,4,11,25,22,2,4,11,32,66,43,2,4,11,33,102,177, %T A268327 86,2,4,11,33,113,337,485,171,2,4,11,33,114,418,1148,1348,342,2,4,11, %U A268327 33,114,434,1644,3984,3797,683,2,4,11,33,114,435,1806,6729,14030,10812,1366,2,4 %N A268327 T(n,k)=Number of length-(n+1) 0..k arrays with new values introduced in sequential order, and with new repeated values introduced in sequential order, both starting with zero. %C A268327 Table starts %C A268327 ...2.....2.....2......2......2......2......2......2......2......2......2......2 %C A268327 ...3.....4.....4......4......4......4......4......4......4......4......4......4 %C A268327 ...6....10....11.....11.....11.....11.....11.....11.....11.....11.....11.....11 %C A268327 ..11....25....32.....33.....33.....33.....33.....33.....33.....33.....33.....33 %C A268327 ..22....66...102....113....114....114....114....114....114....114....114....114 %C A268327 ..43...177...337....418....434....435....435....435....435....435....435....435 %C A268327 ..86...485..1148...1644...1806...1828...1829...1829...1829...1829...1829...1829 %C A268327 .171..1348..3984...6729...8052...8347...8376...8377...8377...8377...8377...8377 %C A268327 .342..3797.14030..28306..37851..40967..41466..41503..41504..41504..41504..41504 %C A268327 .683.10812.49973.121290.184910.213476.220115.220911.220957.220958.220958.220958 %H A268327 R. H. Hardin, <a href="/A268327/b268327.txt">Table of n, a(n) for n = 1..9999</a> %F A268327 Empirical for column k: %F A268327 k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) %F A268327 k=2: a(n) = 7*a(n-1) -14*a(n-2) +21*a(n-4) -7*a(n-5) -6*a(n-6) %F A268327 k=3: [order 12] %F A268327 k=4: [order 19] %F A268327 k=5: [order 29] %F A268327 k=6: [order 40] %F A268327 k=7: [order 54] %e A268327 Some solutions for n=9 k=4 %e A268327 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 %e A268327 ..1....0....1....1....0....1....1....1....0....1....0....1....1....1....1....0 %e A268327 ..2....1....0....2....0....2....2....2....1....2....0....2....2....2....2....1 %e A268327 ..0....1....0....0....0....0....3....1....1....3....1....3....3....0....0....1 %e A268327 ..2....2....2....0....1....2....0....2....2....1....0....0....1....3....3....2 %e A268327 ..0....2....0....1....2....3....1....3....3....3....2....4....2....2....0....2 %e A268327 ..1....3....3....3....3....1....0....0....4....2....1....3....4....0....0....0 %e A268327 ..0....1....0....1....1....0....0....1....1....0....0....1....2....2....0....3 %e A268327 ..1....1....1....0....2....1....0....3....4....1....1....4....3....4....1....1 %e A268327 ..2....0....2....3....3....2....2....4....3....2....1....2....0....2....0....4 %Y A268327 Column 1 is A005578(n+1). %K A268327 nonn,tabl %O A268327 1,1 %A A268327 _R. H. Hardin_, Feb 01 2016