This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268330 #33 Jun 16 2025 00:32:10 %S A268330 1,17,26,2526,5876126,8061827,8996188226,2074150570370 %N A268330 Least squarefree number differing by more than n from any other squarefree number. %C A268330 1.8*10^12 < a(7) <= 10735237201449 - _Robert Israel_, Mar 18 2016 %C A268330 a(8) > 5*10^12. - _Giovanni Resta_, Apr 11 2016 %e A268330 a(2) = 26 because 26 is squarefree but 24,25,27,28 are not. %t A268330 (* implementation assumes a(n) is increasing *) %t A268330 nsfRun[n_]:=Module[{i=n}, While[!SquareFreeQ[i], i++]; i-n] %t A268330 a268330[{low_, high_}, width_]:=Module[{k=width, i, next, r, s, list={}}, For[i=low, i<=high, i+=next, r=nsfRun[i]; If[r<k, next=r+1, s=nsfRun[i+r+1]; If[s<k, next=r+s+2, If[s==k, next=r+s+2, next=r+1]; AppendTo[list, {i,i+r,i+r+s}]; k++]]]; list] /; width>0 (* _Hartmut F. W. Hoft_, Mar 15 2016 *) %t A268330 a268330[{0,10000000},1] (* computes a(1)...a(5) *) %o A268330 (MATLAB) %o A268330 B = 10^8; % blocks of size B %o A268330 nB = 1000; % nB blocks %o A268330 A = [1]; %o A268330 P = primes(floor(sqrt(nB*B))); %o A268330 mmax = 1; %o A268330 i0 = 1; %o A268330 for k = 0:nB-1 % search squarefrees from i0+1 to i0 + B %o A268330 V = true(1, B); %o A268330 for i = 1:numel(P) %o A268330 p = P(i); %o A268330 V([(p^2 - mod(i0,p^2)):p^2:B]) = false; %o A268330 end %o A268330 SF = find(V) + i0; %o A268330 DSF = SF(2:end) - SF(1:end-1); %o A268330 i0 = SF(end-2); %o A268330 M = min(DSF(1:end-1), DSF(2:end)); %o A268330 newmax = max(mmax,max(M)); %o A268330 for i = mmax+1:newmax %o A268330 A(i) = SF(1 + find(M>=i, 1, 'first')); %o A268330 end %o A268330 mmax = newmax; %o A268330 end %o A268330 for i=1:mmax %o A268330 fprintf('%d ',A(i)); %o A268330 end %o A268330 fprintf('\n'); % _Robert Israel_, Mar 16 2016 %Y A268330 Cf. A073247, A268331, A268332, A268333, A268334. %K A268330 nonn,more %O A268330 0,2 %A A268330 _Christopher E. Thompson_, Feb 01 2016 %E A268330 a(6) from _Hartmut F. W. Hoft_, Mar 15 2016 %E A268330 a(7) from _Giovanni Resta_, Apr 11 2016