A268347 Number of partitions of (4, n) into a sum of distinct pairs.
2, 7, 14, 27, 46, 74, 116, 174, 254, 363, 510, 703, 957, 1285, 1706, 2244, 2924, 3777, 4844, 6168, 7802, 9813, 12272, 15267, 18902, 23295, 28584, 34935, 42532, 51592, 62369, 75150, 90265, 108102, 129094, 153743, 182627, 216395, 255792, 301672, 354994, 416851
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Column 4 of A054242.
Programs
-
Mathematica
max=50; col=4; s1=Series[Product[(1+x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}]//Normal; s2=Series[s1, {x, 0, max+1}]; a[n_]:=SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[a[n], {n, 0, max}] (* after Jean-François Alcover *) nmax = 50; CoefficientList[Series[((2 + 3*x - x^3 - 4*x^4 - 2*x^5 + x^6 + x^7 + 2*x^8 - x^9) / ((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)))*Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ 3^(3/4) * n^(5/4) * exp(Pi*sqrt(n/3)) / (2*Pi^4).