cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268348 Number of partitions of (5, n) into a sum of distinct pairs.

Original entry on oeis.org

3, 10, 21, 42, 74, 123, 197, 303, 452, 659, 943, 1323, 1830, 2496, 3363, 4485, 5922, 7748, 10058, 12958, 16578, 21077, 26637, 33476, 41855, 52077, 64496, 79536, 97683, 119505, 145671, 176948, 214225, 258542, 311085, 373227, 446553, 532873, 634265, 753118
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 02 2016

Keywords

Crossrefs

Column 5 of A054242.

Programs

  • Mathematica
    max=50; col=5; s1=Series[Product[(1+x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}]//Normal; s2=Series[s1, {x, 0, max+1}]; a[n_]:=SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[a[n], {n, 0, max}] (* after Jean-François Alcover *)
    nmax = 50; CoefficientList[Series[((3 + 4*x + x^2 - 4*x^4 - 5*x^5 - 4*x^6 + 2*x^8 + 3*x^9 + 3*x^10 - x^12 - 2*x^13 + x^14) / ((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^5)))*Product[1 + x^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^(5/4) * n^(7/4) * exp(Pi*sqrt(n/3)) / (5*Pi^5).