This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A268350 #23 Jul 25 2020 12:52:54 %S A268350 7,13,79,97,223,349,673,1087,1213,1663,3697,13309,13687,16927,20479, %T A268350 21139,25999,32797,33613,78649,122449,151549,263167,401407,651247, %U A268350 1058749,1656247,1893373,2060449,2146687,3058873,3276799,3733207,3866623,3880897,4070197 %N A268350 Primes p where q = p + 4 is also prime and rad((p+1)(p+2)(p+3)) < pq, where rad(k) is the largest squarefree number dividing k. %C A268350 Are there any consecutive primes p and q for which rad((p+1)(p+2)...(q-1)) < pq with q - p > 4? %H A268350 Charles R Greathouse IV, <a href="/A268350/b268350.txt">Table of n, a(n) for n = 1..299</a> %e A268350 79 and 83 are prime, and rad(80*81*82) = rad(2^5*3^4*5*41) = 2*3*5*41 = 1230 < 6557 = 79*83, so 79 is a member of this sequence. %p A268350 rad:= n -> convert(numtheory:-factorset(n),`*`): %p A268350 select(p -> isprime(p) and isprime(p+4) and rad((p+1)*(p+2)*(p+3)) < p*(p+4), [seq(i,i=7..10^7,6)]); # _Robert Israel_, Feb 05 2016 %t A268350 p4Q[n_]:=PrimeQ[n+4]&&Select[Divisors[Times@@(n+{1,2,3})],SquareFreeQ][[-1]]<(n(n+4)); Select[Prime[Range[300000]],p4Q] (* _Harvey P. Dale_, Jul 25 2020 *) %o A268350 (PARI) rad(n)=factorback(factor(n)[,1]) %o A268350 has(p,q)=if(q-p!=4, return(0)); my(t=rad((p+1)/2)*rad((p+3)/2),pq=p*q); 3*t<pq && rad(p+2)*t<pq %o A268350 p=2;forprime(q=3,1e10,if(has(p,q), print1(p", "));p=q) %Y A268350 Subsequence of A029710. %Y A268350 Cf. A078637, A007947. %K A268350 nonn %O A268350 1,1 %A A268350 _J. M. Bergot_ and _Charles R Greathouse IV_, Feb 02 2016