cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268426 Primes of the form p^2 + 12*q^2, p, q primes.

This page as a plain text file.
%I A268426 #10 Oct 08 2024 09:28:55
%S A268426 73,97,157,229,277,337,349,397,409,421,577,613,661,709,757,829,877,
%T A268426 1009,1069,1117,1429,1549,1621,1669,1741,1789,2053,2269,2293,2389,
%U A268426 2437,2557,2797,2857,2917,3109,3301,3517,3529,3637
%N A268426 Primes of the form p^2 + 12*q^2, p, q primes.
%C A268426 A variant of the cuban primes.
%C A268426 Green & Sawhney prove that this sequence is infinite. - _Charles R Greathouse IV_, Oct 08 2024
%H A268426 Zak Seidov, <a href="/A268426/a268426.txt">Table of a(n), p, q for n=1..116.</a>
%H A268426 Ben Green and Mehtaab Sawhney, <a href="https://arxiv.org/abs/2410.04189">Primes of the form p^2 + nq^2</a>, arXiv preprint (2024). arXiv:2410.04189 [math.NT]
%e A268426 73=5^2+12*2^2, 97= 7^2+12* 2^2, 157= 7^2+12*3^2.
%o A268426 (PARI) list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-25)\12), my(t=12*q^2); forprime(p=5, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ _Charles R Greathouse IV_, Oct 08 2024
%Y A268426 Cf. A002407.
%K A268426 nonn
%O A268426 1,1
%A A268426 _Zak Seidov_, Feb 04 2016